
CSCI 3366 April 22, 2010

Slide 1

Administrivia

• Reminder: Homework 4 code due today.

Slide 2

Minute Essay From Last Lecture

• GPGPU (General Purpose Computing on Graphics Processing Units) is the

next big thing? Maybe! OpenCL may be emerging as a standard. Somewhat

different model of computation.

• X10 and/or other new parallel programming environments? Apparently

interest in new environments has picked up again, after falling off for a while.

Hm!

• Threads in C++ standard library? Apparently being considered as part of

standard in work (C++0x). Support for threading also provided by some

third-party libraries (Boost is a free one).



CSCI 3366 April 22, 2010

Slide 3

A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for

multithreaded programming, callable from C/C++.

(“POSIX” is Portable Operating System Interface, a set of IEEE standards

defining an API for UNIX-compatible systems. Implemented to varying

degrees by most UNIX-like systems; implementations also exist for other

systems — e.g., Cygwin for Windows.)

• Same ideas as multithreaded programming with OpenMP and Java, but not

as nicely packaged (my opinion). At one time probably more widely available

than OpenMP compilers, though that has probably changed with gcc

OpenMP support.

Slide 4

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to

execute and a single argument. (Yes, this is restrictive — but the single

argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to

pthread exit().



CSCI 3366 April 22, 2010

Slide 5

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join

in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),

pthread mutex destroy(), pthread mutex lock(),

pthread mutex unlock().

– Condition variables: pthread cond init(),

pthread cond destroy(), pthread cond wait(),

pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),

sem post().

Slide 6

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).



CSCI 3366 April 22, 2010

Slide 7

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.

Slide 8

Example Application — Generic Master/Worker Program

• (Look at code.)



CSCI 3366 April 22, 2010

Slide 9

Minute Essay

• None — sign in.


