
CSCI 3366 April 27, 2010

Slide 1

Administrivia

• Reminder: Project proposals due Thursday.

• Sample solutions for all assignments to be on Web soon.

Slide 2

Example Application — Generic Master/Worker Program

• (Finish looking at code.)



CSCI 3366 April 27, 2010

Slide 3

A Little About Distributed-Memory Programming in Java

• Java doesn’t exactly provide explicit support for distributed-memory parallel

programming.

• However, similar effects can be achieved with multiple Java programs on

different machines communicating via socket-to-socket connections and with

RMI.

Slide 4

Distributed-Memory Programming in Java Using Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.



CSCI 3366 April 27, 2010

Slide 5

Distributed-Memory Programming in Java Using RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

• Example — yet another version of simplified generic master/worker program.

Slide 6

Java RMI — A Short How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to

generate “stubs” to be used in communicating with remote objects as

remote objects.

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.



CSCI 3366 April 27, 2010

Slide 7

Distributed-Memory Programming in Java — Example

• Example — simplified generic master/worker program, similar to the versions

in OpenMP and MPI.

• Version using sockets is relatively straightforward — server creates a new

thread for each client, only tricky bits are in making sure things are shut down

properly. Notice use of synchronized in code to ensure thread-safe

access to shared variables.

• Version using RMI is also straightforward, again except for code to shut down

properly. Notice use of synchronized in code to ensure thread-safe

access to shared variables; experiment suggests that RMI may use multiple

threads to process concurrent requests.

Slide 8

Distributed-Memory Java and Implementation
Mechanisms

• Very similar to MPI, really — UE management is outside the scope of the

libraries, synchronization is implicit. For sockets, communication is explicit; for

RMI, implicit.



CSCI 3366 April 27, 2010

Slide 9

Minute Essay

• None — sign in.


