
CSCI 3366 February 8, 2011

Slide 1

Administrivia

• Reminder: First part of Homework 1 (OpenMP program) due Thursday.

Slide 2

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages, and 2.0

standard even bigger.

• Original reference implementation — MPICH (Argonne National Lab).

LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /

most popular may be OpenMPI (installed here).



CSCI 3366 February 8, 2011

Slide 3

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the (first) standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 4

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.



CSCI 3366 February 8, 2011

Slide 5

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.

Slide 6

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI. You will need to do some setup before MPI

programs will run.)

• We’ll use OpenMPI as installed on the F13 lab machines. There should be

man pages for all commands and functions.

• Compile with mpicc.

• Execute with mpirun.



CSCI 3366 February 8, 2011

Slide 7

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.

Slide 8

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)



CSCI 3366 February 8, 2011

Slide 9

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

Slide 10

Numerical Integration, Revisited

• Recall numerical integration example, sequential version.

• Before talking about how to parallelize using MPI, let’s try to be explicit about

what we did to parallelize with OpenMP, as an example of how to think about

designing a parallel application . . .



CSCI 3366 February 8, 2011

Slide 11

Numerical Integration, Continued

• Starting point is an understanding of the problem/computation. Pretty simple

here, no?

• First step in developing a parallel version is to break the computation down

into the smallest “tasks” that can execute concurrently. Here, that’s the

iterations of the main computation loop.

• Next step is to consider how these tasks interact — are there logic/control

dependencies? data dependencies? shared data? Here, the tasks are all

independent except that they share some variables — so if we can manage

the shared data, we can execute them in any order we want — including

concurrently. We just found some “exploitable concurrency”.

Slide 12

Numerical Integration, Continued

• Next step is to develop a strategy for taking advantage of this potential for

concurrent execution.

• For that, it can help to try to use one of a few very common strategies (which

our book captures as patterns). This example fits the simplest one (Task

Parallelism).



CSCI 3366 February 8, 2011

Slide 13

Numerical Integration, Continued

• Key elements of (Task Parallelism) strategy, as they apply here:

– Split “tasks” (loop iterations) among UEs as evenly as possible, since

they’re all the same size.

– Make sure every UE has its own copy of work variable x.

– Manage the shared variable sum as for “reduction operations” — give

each UE its own local variable, combine at the end.

• Final step is to turn the strategy into code — which we already did in OpenMP.

Slide 14

Numerical Integration in MPI

• Now figure out how to apply the overall strategy using MPI. Key difference is

lack of shared memory — means we don’t have problems with threads

stepping on shared work variables, but we have to work harder to combine

partial results.

• Sample program num-int-par.c.



CSCI 3366 February 8, 2011

Slide 15

Minute Essay

• If you add the following lines to sample program send-recv.c, right after

the call to printf() for process 0

buff[0] = 30;

buff[1] = 40;

what does process 1 print?

Slide 16

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1

(or at least copied to a system buffer somewhere), so the change doesn’t

affect what happens in process 1.


