
CSCI 3366 March 8, 2011

Slide 1

Administrivia

• Reminder: Homework 2 due today.

• (Will most of you be here Thursday?)

Slide 2

Algorithm Structure Design Space

• Historical note: These are the patterns with the longest history. We started

out trying to identify commonly-used overall structures for parallel programs

(these patterns), and then at some point added the other “design spaces”.

• After much thought, writing, revision, and arguing, we came up with . . .



CSCI 3366 March 8, 2011

Slide 3

Algorithm Structure Decision Tree (Fig. 4.2)Start RegularReursiveLinear Reursive Linear
Deision/Branh PointTerminal PatternDeisionTask Parallelism Divide and Conquer Reursive DataPipelineGeometri Deomposition Event-Based CoordinationIrregularOrganize By Tasks Organize By Data Deomposition Organize By Flow Of Data

Slide 4

Algorithm Structure Patterns

• If decomposition/analysis reveals organization in terms of tasks — Task

Parallelism (probably most common strategy) or Divide and Conquer.

• If decomposition/analysis reveals organization in terms of data — Geometric

Decomposition (second most common strategy) or Recursive Data.

• If organization is in terms of flow of data — (Pipeline and Event-Based

Coordination).

• (Notice, by the way, the use of a “pattern format” — consistent list of sections

such as “Problem”, “Context”, etc.)



CSCI 3366 March 8, 2011

Slide 5

Task Parallelism

• Problem statement:

When the problem is best decomposed into a collection of tasks that can

execute concurrently, how can this concurrency be exploited efficiently?

• Key ideas in solution — managing tasks (getting them all scheduled),

detecting termination, managing any data dependencies.

• Many, many examples, including:

– Numerical integration example (next slide).

– Molecular dynamics example (after that).

– Mandelbrot set computation.

– Branch-and-bound computations: Maintain list of “solution spaces”. At

each step, pick item from list, examine it, and either declare it a solution,

discard it, or divide it into smaller spaces and put them back on list. Tasks

consist of processing items from list.

Slide 6

Numerical Integration and Finding Concurrency Patterns

• A task decomposition probably makes sense here, with the tasks being the

iterations of the main loop.

• There’s only one group of tasks, and the tasks in the group can execute

concurrently.

• Data shared among tasks includes a read-only variable (step), a variable

that could be made task-local (x), and an “accumulate data” variable (sum).



CSCI 3366 March 8, 2011

Slide 7

Numerical Integration and Task Parallelism

• How to define tasks so we get “enough but not too many”?

One task per loop iteration is really too many, since each task is so small, but

we can get away with it if we keep the overhead of managing the tasks small

— as all our solutions do.

• How to manage data dependencies (if any)?

Dependency involving x can be managed by just giving each UE its own copy.

Dependency involving sum can be managed by giving each UE a local copy

and combining all copies at end.

• How to assign tasks to UEs? statically (at compile time) or dynamically (at

runtime)?

All tasks are the same size, so static assignment will work and probably be

most efficient.

Slide 8

Molecular Dynamics and Task Parallelism

• How to define tasks so we get “enough but not too many”?

One task per atom pair is too many; one task per atom is probably right.

• How to manage data dependencies (if any)?

Dependency involving forces array — potentially any UE can write to any

element, if we exploit symmetry resulting from Newton’s third law. But

computation is accumulation/reduction, so just give each UE a local copy and

combine all copies at end.

• How to assign tasks to UEs? statically (at compile time) or dynamically (at

runtime)?

Work per task can vary, since how many atoms are “close” varies. Decide at

next level.



CSCI 3366 March 8, 2011

Slide 9

Geometric Decomposition

• Problem statement:

How can an algorithm be organized around a data structure that has been

decomposed into concurrently updatable “chunks”?

• Key ideas in solution — distributing data, arranging for needed

communication.

• Probably second most common pattern. Examples include:

– Heat-diffusion problem previously discussed (next slide).

– Matrix multiplication using blocks.

Slide 10

Heat Diffusion and Geometric Decomposition

• How to distribute data?

One chunk per UE will probably work well. (Note that for other problems it

might not.) Might be nice to include in data structure a place to store values

from neighboring chunks. More in Distributed Array, next chapter.

• How to synchronize/communicate?

With shared memory, just need barrier synchronization.

With distributed memory, need to exchange values with neighbor UEs, also

perform reduction.



CSCI 3366 March 8, 2011

Slide 11

Divide and Conquer

• Problem statement:

Suppose the problem is formulated using the sequential divide and conquer

strategy. How can the potential concurrency be exploited?

• Key idea in solution — create new task(s) every time we split (sub)problem,

recombine when we merge.

• Examples include mergesort and some non-naive algorithms for N -body

problem.

• Straightforward if you already have a sequential divide-and-conquer solution,

but scalability is somewhat limited.

Slide 12

Recursive Data

• Problem statement:

Suppose the problem involves an operation on a recursive data structure

(such as a list, tree, or graph) that appears to require sequential processing.

How can operations on these data structures be performed in parallel?

• Key idea in solution — “out of the box” thinking to expose concurrency.

• Probably least-used structure currently (because it doesn’t map well to

current architectures); included for completeness and because examples are

interesting — e.g. “roots in forest” example.



CSCI 3366 March 8, 2011

Slide 13

Pipeline

• Problem statement:

Suppose that the overall computation involves performing a calculation on

many sets of data, where the calculation can be viewed in terms of data

flowing through a sequence of stages. How can the potential concurrency be

exploited?

• Key idea in solution — set up “assembly line” (pipeline).

• Canonical example is signal/image processing application, where you have a

sequence of incoming images and want to apply same sequence of

transformations to each one.

Slide 14

Event-Based Coordination

• Problem statement:

Suppose the application can be decomposed into groups of

semi-independent tasks interacting in an irregular fashion. The interaction is

determined by the flow of data between them which implies ordering

constraints between the tasks. How can these tasks and their interaction be

implemented so they can execute concurrently?

• Key idea in solution — structure computation in terms of semi-independent

entities, interacting via “events”.

• Canonical example is discrete event simulation — simulating many

semi-independent entities that interact in irregular/unpredictable ways.



CSCI 3366 March 8, 2011

Slide 15

Minute Essay

• How scalable are Pipeline and Event-Based Coordination? if not very, can

you think of a way to fix that?

Slide 16

Minute Essay Answer

• Neither pattern is very scalable, since they’re based on a task decomposition

that has one task per pipeline stage or one task per entity. Sometimes

additional concurrency can be exposed by further decomposing these stages

or entities.


