
CSCI 3366 March 24, 2011

Slide 1

Administrivia

• (None.)

Slide 2

Supporting Structures Program Structure Patterns —
Review

• We identified four basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data) (“like an MPI program”).

– Master/Worker (what the name suggests).

– Loop Parallelism (“like an OpenMP program”).

– Fork/Join (what the name suggests, and also a catchall).

If we chose the names well, you should be able to make some guesses about

what the patterns represent just from the names. (Maybe not for all of these.)



CSCI 3366 March 24, 2011

Slide 3

Master/Worker — Context/Forces

• For applications where it’s easy to tell how to split up the computational load

to get “good load balance”, previous two patterns usually work well.

• But for some applications, it’s not so obvious how to do this — maybe not

really possible, if work per task varies a lot and is not predictable, or if target

platform includes PEs with different capabilities.

Slide 4

Master/Worker — Solution Elements

• Basic idea — one or more workers that execute tasks, master that manages

things.

• “Bag of tasks” represents tasks yet to be done. Typically created by master

process; often implemented as shared queue. Workers can pull elements

from it directly, or can communicate with master to get new tasks.

• Typical approach shown in Fig. 5.14.



CSCI 3366 March 24, 2011

Slide 5

Master/Worker — Solution Elements, Continued

• Several potential complications:

– All tasks may be known initially, or new ones may be generated during

computation.

– Usually computation isn’t done until all tasks are done, but sometimes can

stop early.

• Several variations/optimizations:

– Master can turn into a worker after creating tasks. (Obviously more

efficient if it has nothing to do.)

– Master can be implicit, if tasks are loop iterations and dynamic scheduling

of loop iterations is possible.

• Implementation normally involves, to some extent, one of the other patterns in

this chapter.

Slide 6

Master/Worker — Examples and Uses

• Particularly good for Task Parallelism problems with completely independent

tasks (“embarrassingly parallel”).

• Example — MPI generic master/worker program.



CSCI 3366 March 24, 2011

Slide 7

Fork/Join — Context/Forces

• For applications where the number of concurrent tasks is more or less

constant, and relationships among them are simple and regular, previous

patterns usually work well.

• But for some applications, tasks are created dynamically (“forked”) and later

terminated (“joined” with forking task) as program runs. Sometimes you can

still use one of the previous patterns, but sometimes not — if relationships

among tasks are recursive (e.g., Divide and Conquer ) or irregular, or if

different tasks represent different functions (i.e., you need to do two or more

different things concurrently).

• In that case, it may make more sense to create a UE for each task —

potentially expensive, but easier to understand.

Slide 8

Fork/Join — Solution Elements

• Simple approach — one task per UE. As new tasks are created, a new UE is

created for each; when the task finishes, the UE is destroyed. Typically the

UE that created the new task/UE waits for it to finish. Simple to understand,

but potentially inefficient.

• More complicated approach — pool of UEs and queue of tasks, with UEs

grabbing new tasks out of the queue as they finish their old tasks. Potentially

more efficient, but more complicated to program and understand.



CSCI 3366 March 24, 2011

Slide 9

Fork/Join — Examples and Uses

• Particularly good for Divide and Conquer and Recursive Data problems.

One-task-per-UE version is OpenMP’s standard programming model

(expressed implicitly). Also matches (pre-1.5) Java’s support for

multithreading.

(Curiously enough, though, most OpenMP programs really use the simpler

Loop Parallelism.)

• Example — mergesort.

Slide 10

Supporting Structures Data Structure Patterns

• Probably not a complete list, but some examples of frequently-used ways of

sharing data:

– Shared Data (generic advice for dealing with data dependencies).

– Shared Queue (what the name suggests — mostly included as example of

applying Shared Data).

– Distributed Array (what the name suggests).

• Programming environment / library may provide support (e.g., Java has library

class(es) for shared queues).



CSCI 3366 March 24, 2011

Slide 11

Shared Queue

• Many applications — especially ones using a master/worker approach —

need a shared queue. Programming environment might provide one, or might

not. Nice example of dealing with a shared data structure anyway.

• Java code in figures 5.37 (p. 185) through 5.40 (p. 189) presents a

step-by-step approach to developing implementation.

Slide 12

Shared Queue, Continued

• Simplest approach to managing a shared data structure where concurrent

modifications might cause trouble — one-at-a-time execution. Shown in

figures 5.37 (nonblocking) and 5.38 (block-on-empty). Only tricky bits are use

of dummy first node and details of take. Reasons to become clearer later.

Usually a good idea to try simplest approach first, and only try more complex

ones if better performance is needed. (“Premature optimization is the root of

all evil.” Attributed to D. E. Knuth; may actually be C. A. R. Hoare.)

• Here, next thing to try is concurrent calls to put and take. Not too hard for

nonblocking queue — figure 5.39. Tougher for block-on-empty queue —

figure 5.40. In both cases, must be very careful.

• If still too slow, or a bottleneck for large numbers of UE, explore distributed

queue.



CSCI 3366 March 24, 2011

Slide 13

Distributed Array

• Key data structures for many scientific-computing applications are large

arrays, often 2D or 3D.

• If we have lots and lots of memory shared among UEs, and time to access an

element doesn’t depend on UE, all is well. Usually not the case. though —

obviously true for distributed-memory systems, somewhat true for NUMA

systems also.

• So — typical approach is to partition array into blocks and distribute them

among UEs. Idea is to do this to get:

– Good load balance.

– Minimum communication.

– “Clarity of abstraction”. Key idea — global indices versus local indices.

Pictures are easy to draw and understand; code can get messy.

Slide 14

Distributed Array, Continued

• Commonly used approaches (“distributions”):

– 1D block.

– 2D block.

– Block-cyclic.

• For some problems (such as heat distribution problem), makes sense to

extend each “local section” with “ghost boundary” containing values needed

for update.

• Look at some versions of code for the heat-distribution problem. (MPI code in

book as Figures 4.14 and 4.15 (pp. 90–91).)



CSCI 3366 March 24, 2011

Slide 15

Minute Essay

• None — sign in.


