
CSCI 3366 April 28, 2011

Slide 1

Administrivia

• Sample solutions for all regular homeworks on Web.

• Project presentations morning of May 4. Scheduled time is 8:30am but we

could start later — 10am? Everything else due the same day at 11:59pm.

• Information about office hours next week coming by e-mail soon.

Slide 2

More Administrivia

• “What about our grades?” You will get information by e-mail as soon as I have

it.

• Recall(?) weights from syllabus:

– 20 points class participation (attendance).

– 140 points homework.

– 80 points project.

(Be advised also that in the past I have sometimes given extra credit for

particularly good projects.)



CSCI 3366 April 28, 2011

Slide 3

Programming Environments, Revisited

• Choice of environments for book was based on how things were when it was

written — MPI fairly dominant for distributed memory and OpenMP for shared

memory, with Java not so widely used for parallel programming but more

familiar/available.

• All three include more than we had time to cover in class, and have continued

to evolve, and then there’s a whole new hardware platform (GPUs) . . .

Slide 4

OpenMP Revisited

• OpenMP worksharing constructs define “implicit tasks” (one per thread). We

looked only at parallel loops, but there are also “parallel sections”, which allow

for nesting/recursion.

• OpenMP 3.0 adds support for explicit tasks, which may help with some kinds

of problems (irregular and recursive).



CSCI 3366 April 28, 2011

Slide 5

MPI Revisited

• Even MPI 1.0 includes far more than we could cover in class — many

collective communication operations, communicators, process topologies,

and support for user-defined data types in messages.

• MPI 2.0 and later versions add more — e.g., process spawning and

one-sided communication.

Slide 6

Java Revisited

• Java 1.5 brought into the standard library a lot of classes previously available

as third-party additions — thread pools, locks, various shared-data classes,

etc.

• Java memory model also cleaned up a bit.

• (Curiously enough, though, the need for explicit multithreading in GUIs seems

to have declined, with the notion of the EDT and new classes such as

SwingWorker and timers.)



CSCI 3366 April 28, 2011

Slide 7

“GPGPU”

• Graphics processors emerging as a new platform for parallel computing —

hardware is becoming sophisticated enough to support computation beyond

the cards’ original purpose, so why not put it to use?

• No consensus yet about programming environments, but OpenCL might

emerge as a semi-standard, as MPI and OpenMP did.

• Some interesting challenges, though . . .

Slide 8

A Little About GPU Hardware

• Processing hardware seems to typically include many processors working

more or less in lockstep, each able to do pipelined/vector operations — i.e.,

SIMD, making a comeback!

• Typical hardware seems to also include a possibly-complex memory hierarchy

separate from the memory hierarchy of the “host computer”.



CSCI 3366 April 28, 2011

Slide 9

A Little About Programming for GPU Hardware

• SIMD hardware makes a data-parallel style of programming a good fit. Not

something we really address in our pattern language (yet!), but conceptually

similar to Geometric Decomposition but more closely synchronized.

A.k.a. “stream processing”?

• So, you might express computations as a sequence of whole-array

operations, or in terms of applying a “computational kernel” in parallel to many

data elements. Whole-array operations included in some programming

environments (e.g., Fortran). Current programming environments for GPUs

(NVIDIA’s CUDA, e.g., and OpenCL) seem to use the computational-kernel

idea.

Slide 10

A Little About Programming for GPU Hardware,
Continued

• Currently moving data back and forth between host’s memory and GPU’s

memory must be done explicitly. Actually maybe not a bad idea given that it

does take time?

• (Short example?)



CSCI 3366 April 28, 2011

Slide 11

Review of Course

• “PAD I for parallel programming”? We covered:

– Three languages/libraries — OpenMP, MPI, Java.

– How to find and exploit concurrency in programs.

• We also did several running examples and some homeworks . . .

Slide 12

Review of Homeworks

• Homeworks 1 and 2 — estimating π with Monte Carlo methods. Basic

structure is Task Parallelism. Complication is that you need a thread-safe

RNG.

• Homework 3 — Conway’s game of life. Basic structure is Geometric

Decomposition. Basic idea easy, details a bit messy (particularly for MPI).

• Homework 4 — quicksort. Basic structure is Divide and Conquer.

• For all programs, probably need large problem sizes to get any benefit from

multiple UEs. Even then performance may not be amazingly good, but the

primary goal is pedagogical rather than practical.



CSCI 3366 April 28, 2011

Slide 13

Sort of for Fun — Performance Results versus Hype

• Fifteen years ago one David Bailey wrote a paper called “Twelve Ways to Fool

the Masses When Giving Performance Results on Parallel Computers”.

Somewhat tongue in cheek, but many very valid points.

• Link to original text on course “Useful links” page. Let’s skim . . .

• Points for discussion: Have we been guilty, in this course, of doing any of the

things he warns against, or have we been careful to avoid them? What if

anything does it mean when your parallel program doesn’t seem to run faster

as you increase the number of UEs? (It could mean that “multicore is the

wave of the future!” is hype, right? Does it?)

Slide 14

Minute Essay

• How did the course compare with your expectations/goals? Did you learn

what you hoped to learn?


