
CSCI 3366 August 28, 2013

Slide 1

Administrivia

• One purpose of the syllabus is to spell out policies (next slides).

• Most other information will be on the Web, either on my home page (here,

office hours) or the course Web page (here).

A request: If you spot something wrong with course material on the Web,

please let me know!

Slide 2

Course FAQ

• “What will my grade be based on?” (See syllabus.)

• “What happens if I can’t turn in work on time, or I miss a class?” (See

syllabus.)

• “What’s your policy on collaboration?” (See syllabus.)

http://www.cs.trinity.edu/~bmassing
http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2013fall/HTML/


CSCI 3366 August 28, 2013

Slide 3

Course FAQ, Continued

• “When is the next homework due?” (See “Lecture topics and assignments”

page.)

• “Do I have to use the lab computers for programming assignments?” (No, but

that may be the easiest way to make sure they meet my criteria for full credit

— I will test on one of these machines.)

• “When are your office hours?” (See my home page.)

Note that part of my job is to answer your questions outside class, so if you

need help, please ask! in person or by e-mail or phone.

Slide 4

Course FAQ, Continued

• Why are we using “my” book when there are books that are more

textbook-like? because (1) I think it emphasizes the right things, which many

textbooks don’t, and (2) learning from a not-really-a-textbook and other

resources should be good practice for whatever you do after you graduate.

(I don’t actually think I’m going to be able to retire on the extra royalty income

— but it might be enough to finance a trip to Java City for the class?)



CSCI 3366 August 28, 2013

Slide 5

What is Parallel/Distributed Computing?

• Some computational jobs are just too much for one processor — no way to

get them done in reasonable time.

• For jobs done by people, what do you do when the job is too much for one

person?

Slide 6

What is Parallel/Distributed Computing?

• For jobs done by people, if too much for one person you assign a team — but

you have to figure out

– How to divide up work among team members.

– How to coordinate activities of team members.

• Same idea applies to computing — if too much for one processor, use multiple

processors. Issues are similar — how to divide up work, how to coordinate.



CSCI 3366 August 28, 2013

Slide 7

Simple Examples

• “People job” examples:

– Digging a hole.

– Building a house.

– Baby.

What do you notice about the last one in particular?

• Computer examples:

– Adding up a lot of numbers.

– Computing Fibonacci numbers.

But these don’t seem too “big” . . .

Slide 8

How Much Calculating is “A Lot”?

• Slightly dated examples from computational biology — how many operations

per second are needed to get things done fast enough to be useful?:

– Sequence the genome — 1012 ops/second (500 2-Gigahertz processors).

– Protein/protein interactions — 1014 ops/second (25,000 4-Gigahertz

processors).

– Simulating whole-body response to a drug — 1016 operations/second

(1,250,000 8-Gigahertz processors).

• (Source — Intel’s former life sciences industry manager.)



CSCI 3366 August 28, 2013

Slide 9

What Are Some Other Hard Problems?

• Crash simulation / structural analysis.

• Oil exploration.

• Explosion simulations (why Los Alamos is interested).

• Astrophysics simulations (e.g,, Dr. Lewis’s work on Saturn’s rings).

• Fluid dynamics.

• “Rendering” for computer-generated animation.

• And many others . . .

Slide 10

The Need for Speed

• Solving the same problems faster — reducing wall-clock time.

• Solving bigger problems.

• Solving problems more exactly — to get better answers, need more detail,

hence more processing.



CSCI 3366 August 28, 2013

Slide 11

Can’t You Just Get a Faster Computer?

• Up to a point — yes. Moore’s law predicts that number of transistors on a die

roughly doubles every 1.5 years. Until recently, that meant doubling processor

speed and memory. (Over 30 years, that’s a factor of about a million!)

• But . . .

Slide 12

Can’t You Just Get a Faster Computer? continued

• As you know — however fast processors are, it’s never fast enough, and

faster is more expensive.

• Eventually we’ll run into physical limitations on hardware — speed of light

limits how fast we can move data along wires (in copper, light moves 9 cm in a

nanosecond — one “cycle” for a 1GHz processor), other factors limit how

small/fast we can make chips.

• Maybe we can switch to biological computers or quantum computers, but

those are pretty big paradigm shifts . . .

• In the past few years, chip makers are still able to put more transistors on a

chip, but they seem to have run out of ways to exploit that to get more speed,

and are instead making chips with multiple processing elements (“cores” for

computational chips, other elements in GPUs).



CSCI 3366 August 28, 2013

Slide 13

“The Answer” — Parallel Computing

• Analogous to “team of people” idea — if one processor isn’t fast enough, use

more than one.

• Also useful when there’s something “inherently parallel” about the problem —

e.g., operating systems, GUI-based applications, etc.

• http://www.top500.org tracks fastest computers; for many years

now all have been “massively parallel”.

Slide 14

But I Don’t Want To Solve Problems Like Those!

• What if you aren’t interested in solving problems like these “grand challenge”

problems, Is there still a reason to be interested in parallel computing?

• The hardware is there, and it’s becoming mainstream — multicore chips,

general-purpose computing GPUs, etc. (The Intel person says “the chip

makers can put more and more transistors on a chip, and this is the best way

to use that.”)

To get best use of it for single applications, will probably need parallelism.

• Also, for some applications, thinking of them as parallel/multithreaded can

lead to a solution that lets you do something useful while waiting for I/O, etc.



CSCI 3366 August 28, 2013

Slide 15

About the Course

• Can think of this course as the equivalent of CS1 for parallel (and to some

extent concurrent and distributed) programming. As with CS1, many things to

learn all at once:

– A new “box of tools” — or several boxes of tools (different

languages/libraries/paradigms). Must learn syntax/functions, plus tools

such as compilers and runtime systems.

– How to use the stuff in the box of tools to solve interesting problems —

from low-level “what is this syntax good for?” to algorithm design.

– How to think about “does it work?”

– How to think about “how fast is it?”

• Also as with CS1, the idea will be to teach a mix of technical skills and basic

concepts, with emphasis on learning by doing.

Slide 16

Minute Essay

• What are your goals for this course?

• Are you reasonably comfortable with Java and C? How about C++? (There

will be assignments using both C and Java.)

• Do you have any experience already with parallel or multithreaded

programming? If so, tell me about it, briefly.

• Anything else you want to tell me? about the course, about what you did over

the summer . . .


