
CSCI 3366 September 9, 2013

Slide 1

Administrivia

• (Information about revised appendices TBA.)

Slide 2

Minute Essay From Last Lecture

• Is there some way to avoid race conditions without overhead of typical

synchronization mechanisms?

Maybe — try looking up “lock-free algorithms”. Reputedly somewhat difficult

topic.



CSCI 3366 September 9, 2013

Slide 3

Recap — Overview of Hardware / Software Models

• Hardware models in current use include shared-memory MIMD,

distributed-memory MIMD, and now SIMD.

• Each has a corresponding programming model (though current SIMD

platforms are still evolving).

Slide 4

What Programming Languages Support This?

• A regular sequential language, with a parallelizing compiler.

• A language designed to support parallel programming (Java, Ada, PCN).

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads).

• A regular sequential language with some added features (CC++, OpenMP).

• For each of these categories: How attractive is it for programmers? How easy

is it to implement?



CSCI 3366 September 9, 2013

Slide 5

What Programming Languages Support This?,
Continued

• A regular sequential language with a parallelizing compiler: Attractive, but

such compilers are not easy.

• A language designed to support parallel programming (Java, Ada, PCN):

Perhaps the most expressive, but more work for programmers and

implementers.

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads): More familiar for users, easier to implement.

• A regular sequential language with some added features (CC++, OpenMP):

Also familiar for users, can be difficult to implement.

Slide 6

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many! (Table 2.1 in book has a list — and we might have missed a

few.)

• For our book we chose one of each:

– MPI (library) — a semi-standard for message-passing programming.

– OpenMP (language extension) — an emerging standard for

shared-memory programming.

– Java — widely available and might be many people’s first exposure to

parallel programming.

(If writing it now, would probably include OpenCL — possible emerging

standard for GPGPU.)

• Other popular programming environments include POSIX threads (Pthreads),

Win32 API, PVM, . . .



CSCI 3366 September 9, 2013

Slide 7

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”, corresponding to (we

think) steps in program design / development.

Slide 8

A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal(1)

Ttotal(P )

• What’s the best possible value you can imagine for S(P )?



CSCI 3366 September 9, 2013

Slide 9

Performance, Continued

• Best possible value for S(P )? would seem to be P , right?

• Can you think of circumstances in which you could do better (“superlinear

speedup”)?

Slide 10

Performance, Continued

• “Superlinear speedup” could happen if dividing up the computation among

processors means more of the program’s code/data can fit into memory, or

cache. Could also happen in searches, if you can stop after finding one

solution.

• What’s the worst value you can imagine for S(P )?



CSCI 3366 September 9, 2013

Slide 11

Performance, Continued

• Worst possible value would seem to be 1, right?

• Can you think of circumstances in which you’d do worse? (Hint: What do you

know so far about how the parts of the program running on different

cores/processors/machines interact?)

Slide 12

Parallel Overhead

• Many reasons why a “real” parallel program might be slower than hoped for —

even, possibly, slower than the sequential program!

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

(Sometimes can speed things up by “overlapping computation and

communication”.)

• Also, “poor load balance” may slow things down.

• (And we’re not even mentioning what happens if you don’t have exclusive

access to all processors.)



CSCI 3366 September 9, 2013

Slide 13

Performance, Continued

• Even without overhead, though, why wouldn’t we always get “perfect”

speedup (P )?

Slide 14

Amdahl’s Law

• And most “real programs” have some parts that have to be done sequentially.

Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this

limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches 1

γ
— upper bound on speedup.

(Details of math in chapter 2.)



CSCI 3366 September 9, 2013

Slide 15

What’s Next — Nuts and Bolts

• So we can start writing programs as soon as possible, next topic will be a fast

tour through the three (four?) programming environments we will use for

writing programs. (OpenCL to be included if possible.)

Slide 16

OpenMP

• Early work on message-passing programming resulted in many competing

programming environments — but eventually, MPI emerged as a standard.

• Similarly, initially many different programming environments for

shared-memory programming, but OpenMP emerged as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Production-quality commercial compilers appeared first. At one point, only

no-cost compilers were “research software” or in work. Support then added to

GNU compilers.



CSCI 3366 September 9, 2013

Slide 17

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable or from within program.

Slide 18

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.

• (To be continued.)



CSCI 3366 September 9, 2013

Slide 19

Minute Essay

• None — sign in.


