
CSCI 3366 September 11, 2013

Slide 1

Administrivia

• Homework 1 to be on the Web soon. I will send mail.

• Notes on using OpenMP on the Web, linked from course Web page and my

home page. Also notes on GNU compilers.

• (Status of updated appendices.)

Slide 2

OpenMP Programs — Recap/Review

• OpenMP defines some concepts and a set of extensions to three base

languages (C, C++, Fortran). These extensions include compiler directives

and library functions.

• So, OpenMP programs look like programs in the base language, plus the

directives, which are defined in a way that the code still compiles as

sequential code even without support for the directives.



CSCI 3366 September 11, 2013

Slide 3

Simple Example / Compiling and Executing

• Look at simple programs — hello.c, hello++.cpp on sample

programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.

Slide 4

Sidebar: “Atomic” Operations

• Some discussion last time about different behavior of printf and C++

stream output — “are they doing some kind of locking?”

• Interesting question, but possibly a better way to describe it is in terms of

atomicity — an “atomic” operation is one that executes as one indivisible

operation, without interference from other units of execution. Whether that

effect comes from locks or something else maybe we don’t need to know.

(Yet?)



CSCI 3366 September 11, 2013

Slide 5

Sidebar — GNU Compilers on Classroom/Lab Machines

• Two versions of GNU compiler collection installed this year:

– Most-recent version available in standard Scientific Linux repositories

(4.4.7).

– Current version available directly from project Web site (4.8.1). Supports

many (most?) C++11 additions/changes.

• Default is 4.4.7. To get the newer version, type

module load gcc-4.8.1

(module avail if you don’t remember the name)

and then standard command names (gcc, g++, etc.) should give you the

4.8.1 version. Also sets up other needed environment.

Slide 6

Sidebar — make and makefiles

• Compiling with non-default options (as you must do to compile OpenMP

programs with gcc) can become tedious.

• make can help. Briefly — it’s a very old UNIX tool intended to help automate

building large programs. Can be used in different ways, but one of them is

simply to make it easy to compile with non-default options.

• To use make, set up Makefile (example linked from “Sample programs”

Web page), and then type make foo to compile foo.c to foo.



CSCI 3366 September 11, 2013

Slide 7

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile. To be sure it’s set in

terminal-window sessions may need to set it in .bashrc.)

• To run bar with a value for FOO:

FOO=fooval bar

Slide 8

How Do Threads Interact?

• With OpenMP, threads share an address space, so they communicate by

sharing variables. (Contrast with MPI, to be discussed next, in which

processes don’t share an address space, so to communicate they must use

messages.)

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.



CSCI 3366 September 11, 2013

Slide 9

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (Discuss.)

Slide 10

Synchronization Constructs

• critical — only one thread at a time executes this block of code.

(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of

parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about

them in the specification.



CSCI 3366 September 11, 2013

Slide 11

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.

Slide 12

Minute Essay

• None — “sign in” (send me e-mail if you have questions or comments).


