
CSCI 3366 September 16, 2013

Slide 1

Administrivia

• (You all got my e-mail of last week, about appendices, right?)

Slide 2

Numerical Integration Problem in OpenMP, Revisited

• Anyone have interesting results to report?



CSCI 3366 September 16, 2013

Slide 3

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages, and 2.0

standard even bigger.

• Original reference implementation — MPICH (Argonne National Lab).

LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /

most popular may be OpenMPI (installed here).

Slide 4

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the (first) standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)



CSCI 3366 September 16, 2013

Slide 5

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.

Slide 6

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.



CSCI 3366 September 16, 2013

Slide 7

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI. You will need to do some setup before MPI

programs will run.)

• We’ll use OpenMPI as installed on the lab machines. There should be man

pages for all commands and functions.

• Compile with mpicc.

• Execute with mpirun.

Slide 8

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.



CSCI 3366 September 16, 2013

Slide 9

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)

Slide 10

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.



CSCI 3366 September 16, 2013

Slide 11

Minute Essay

• None — sign in.


