
CSCI 3366 September 18, 2013

Slide 1

Administrivia

• Homework 1 to be on the Web tomorrow, due next Wednesday. I will send

mail.

Slide 2

Numerical Integration, Revisited

• Recall numerical integration example, sequential version.

• Before talking about how to parallelize using MPI, let’s try to be explicit about

what we did to parallelize with OpenMP, as an example of how to think about

designing a parallel application . . .



CSCI 3366 September 18, 2013

Slide 3

Numerical Integration, Continued

• Starting point is an understanding of the problem/computation. Pretty simple

here, no?

• First step in developing a parallel version is to break the computation down

into the smallest “tasks” that can execute concurrently. Here, that’s the

iterations of the main computation loop.

• Next step is to consider how these tasks interact — are there logic/control

dependencies? data dependencies? shared data? Here, the tasks are all

independent except that they share some variables — so if we can manage

the shared data, we can execute them in any order we want — including

concurrently. We just found some “exploitable concurrency”.

Slide 4

Numerical Integration, Continued

• Next step is to develop a strategy for taking advantage of this potential for

concurrent execution.

• For that, it can help to try to use one of a few very common strategies (which

our book captures as patterns). This example fits the simplest one (Task

Parallelism).



CSCI 3366 September 18, 2013

Slide 5

Numerical Integration, Continued

• Key elements of (Task Parallelism) strategy, as they apply here:

– Split “tasks” (loop iterations) among UEs as evenly as possible, since

they’re all the same size.

– Make sure every UE has its own copy of work variable x.

– Manage the shared variable sum as for “reduction operations” — give

each UE its own local variable, combine at the end.

• Final step is to turn the strategy into code — which we already did in OpenMP.

Slide 6

Numerical Integration in MPI

• Now figure out how to apply the overall strategy using MPI. Key difference is

lack of shared memory — means we don’t have problems with threads

stepping on shared work variables, but we have to work harder to combine

partial results.

• Sample program num-int-par.c.



CSCI 3366 September 18, 2013

Slide 7

Minute Essay

• If you add the following lines to sample program send-recv.c, right after

the call to printf() for process 0

buff[0] = 30;

buff[1] = 40;

what does process 1 print?

Slide 8

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1

(or at least copied to a system buffer somewhere), so the change doesn’t

affect what happens in process 1.


