
CSCI 3366 September 23, 2013

Slide 1

Administrivia

• (Homework — coming soon. E-mail.)

Slide 2

Sidebar(?): MPI Numerical Integration Example
Revisited

• (Discussion of why results were surprising.)



CSCI 3366 September 23, 2013

Slide 3

Parallel Programming in Java

• Java supports multithreaded (shared-memory parallel) programming as part

of the language — synchronized keyword, wait and notify

methods of Object class, Thread class. Programs that use the GUI

classes (AWT or Swing) multithreaded under the hood. Justification probably

has more to do with hiding latency than HPC, but still useful, and versions 5.0

and beyond includes much useful library stuff.

• Java also provides support for forms of distributed-memory programming,

through library classes for networking, I/O (java.nio), and Remote

Method Invocation (RMI).

Slide 4

What Does A Multithreaded Java Program Look Like?

• Easy answer: Like a regular Java program. (In fact, any program with a

GUI . . . )

• Programming model: All threads share a common address space.

Programmer is responsible for creating threads, providing synchronization,

etc.



CSCI 3366 September 23, 2013

Slide 5

Creating Threads in Java

• Threads are all instances of Thread class (or a subclass). Pre-5.0, two

ways to create threads:

– Create a subclass of Thread (frowned on by o-o purists).

– Create a Thread using an object that implements Runnable

(preferable).

Either way, run method (of subclass of Thread, or of Runnable)

contains code for thread to execute.

• Start thread with start method. Can wait for it to finish with join.

• “Hello world” example (Hello1.java and Hello2.java on sample

programs page). (Other methods in java.util.concurrent — see

sample programs Hello3.java, Hello4.java, Hello5.java.)

Slide 6

Java from the Command Line

• Most of you probably use Eclipse to write Java programs. You can do that for

this course too, but for this course you will likely prefer to run them from the

command line (since you need to supply environment variables that will vary

from run to run). Command to use is java, followed by class name and any

arguments. (If class files are not in current directory, specify where they are

with -classpath.)

• You can also write them using your favorite text editor compile from the

command line. Command to compile is javac.



CSCI 3366 September 23, 2013

Slide 7

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to

variables is consistent with usual Java scoping — class/instance variables,

parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be

risky, however. So . . .

Slide 8

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and

Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run

this when you have the relevant lock” — if another thread has the lock, wait.

Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance

methods) or class (static methods). For synchronized blocks, you specify the

object.

Example — HelloSynch*.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination.

But first . . .



CSCI 3366 September 23, 2013

Slide 9

Minute Essay

• None — sign in.


