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Administrivia

• Homework 2 on the Web. Due next Wednesday. Exact requirements for

OpenCL program to be added, but you should be able to do the other three

now.

• Notice that reading assignments have been modified — you should read the

updated versions of the appendices (though if you read the ones in the book,

much will be review).
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GPGPU

• Recall from overview/introduction that the SIMD (Single Instruction, Multiple

Data) model was popular in the relatively early days of parallel programming,

fell of favor, and is now making a comeback as “GPGPU” (General-Purpose

computing on Graphics Processing Units).

• Typically SIMD is a good fit for GPU hardware — but it’s worth noting that they

usually(?) have their own memory, not shared with “host” CPU, which makes

programming more complicated and has implications for performance.
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OpenCL

• Early work on shared-memory and message-passing programming resulted

in many competing programming environments — but eventually, OpenMP

and MPI emerged as standards.

• Similarly, initially many different programming environments for GPGPU, but

OpenCL might be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives. For

OpenCL, concepts and library.

• First release 2008; evolving fairly rapidly. Meant to address not just GPGPU

but more-general problem of “heterogeneous computing” (computing using

mix of computational resources).

Slide 4

What’s an OpenCL Program Like?

• Source code in C/C++, with calls to OpenCL functions.

• Typically includes source to be compiled at runtime for whatever device is to

be used. “Device”? yes, many new terms/concepts . . .
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OpenCL Terms and Concepts

• Compute device — something capable of doing computations (CPU, GPU,

etc.).

• Kernel — computation to execute on device.

• Index-space — range of indices (1D or more) on which to execute kernel.

• Work-item — one execution of kernel. Grouped into work-groups.

• Compute context, program object, command queue — various aspects of

setting up environment and assigning work to devices.

• Several memory regions — host memory, local memory, etc.
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Simple(?) Examples / Compiling and Executing

• Compile with C/C++ compiler, with flags to pick up additional files from

OpenCL implementation.

• Execute like regular program — but may need access to GPU beyond what’s

always available.

• Maybe worth noting that you can’t really write a “hello world” program, since

compute device doesn’t necessarily have access to standard output! (Look at

semi-simple examples semi-hello.c and vector-add.c on

sample programs page.)
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Minute Essay

• None — sign in.


