
CSCI 3366 October 7, 2013

Slide 1

Administrivia

• Homework 2 on the Web. Due next Wednesday. Exact requirements for

OpenCL program to be added, but you should be able to do the other three

now.

• Notice that reading assignments have been modified — you should read the

updated versions of the appendices (though if you read the ones in the book,

much will be review).

Slide 2

GPGPU

• Recall from overview/introduction that the SIMD (Single Instruction, Multiple

Data) model was popular in the relatively early days of parallel programming,

fell of favor, and is now making a comeback as “GPGPU” (General-Purpose

computing on Graphics Processing Units).

• Typically SIMD is a good fit for GPU hardware — but it’s worth noting that they

usually(?) have their own memory, not shared with “host” CPU, which makes

programming more complicated and has implications for performance.



CSCI 3366 October 7, 2013

Slide 3

OpenCL

• Early work on shared-memory and message-passing programming resulted

in many competing programming environments — but eventually, OpenMP

and MPI emerged as standards.

• Similarly, initially many different programming environments for GPGPU, but

OpenCL might be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives. For

OpenCL, concepts and library.

• First release 2008; evolving fairly rapidly. Meant to address not just GPGPU

but more-general problem of “heterogeneous computing” (computing using

mix of computational resources).

Slide 4

What’s an OpenCL Program Like?

• Source code in C/C++, with calls to OpenCL functions.

• Typically includes source to be compiled at runtime for whatever device is to

be used. “Device”? yes, many new terms/concepts . . .



CSCI 3366 October 7, 2013

Slide 5

OpenCL Terms and Concepts

• Compute device — something capable of doing computations (CPU, GPU,

etc.).

• Kernel — computation to execute on device.

• Index-space — range of indices (1D or more) on which to execute kernel.

• Work-item — one execution of kernel. Grouped into work-groups.

• Compute context, program object, command queue — various aspects of

setting up environment and assigning work to devices.

• Several memory regions — host memory, local memory, etc.

Slide 6

Simple(?) Examples / Compiling and Executing

• Compile with C/C++ compiler, with flags to pick up additional files from

OpenCL implementation.

• Execute like regular program — but may need access to GPU beyond what’s

always available.

• Maybe worth noting that you can’t really write a “hello world” program, since

compute device doesn’t necessarily have access to standard output! (Look at

semi-simple examples semi-hello.c and vector-add.c on

sample programs page.)



CSCI 3366 October 7, 2013

Slide 7

Minute Essay

• None — sign in.


