
CSCI 3366 November 6, 2013

Slide 1

Administrivia

• Next homework will be on the Web early tomorrow. Due in a week.

• I’m continuing to tweak some of the example programs. Most changes are not

really significant, but I did find a better way to get a reasonable result for the

numerical integration example with (single-precision) floats.

Slide 2

Review — Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

– Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

– Algorithm Structure patterns — high-level program structures.

– Supporting Structure patterns — program structures (e.g., SPMD,

fork/join), data structures (e.g., shared queue).

– Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments.



CSCI 3366 November 6, 2013

Slide 3

Supporting Structures Design Space

• Key idea here — represent (and talk about in general terms) two classes of

commonly-used things:

– Program structures — e.g., SPMD (think “like MPI programs”).

– Frequently-used data structures — e.g., shared queue.

Slide 4

Forces

• Part of the “design pattern” idea is that a good pattern represents a good

trade-off between “forces” pulling in different directions.

• For the patterns in this chapter, common set of forces:

– Clarity of abstraction — is structure clear from code?

– Scalability — does program “scale” well to large numbers of PEs

(processing elements)?

– Efficiency — does it make good use of resources?

– Maintainability — can humans understand it?

– Environmental affinity — does it work well in the likely target

environment(s)?

– Sequential equivalence — same results no matter how many processes?



CSCI 3366 November 6, 2013

Slide 5

Program Structure Patterns

• We identified four basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data).

– Master/Worker.

– Loop Parallelism.

– Fork/Join.

If we chose the names well, you should be able to make some guesses about

what the patterns represent just from the names. (Maybe not for all of these.)

Slide 6

SPMD — Context/Forces

• Often makes sense, especially for large-scale parallelism, to have all UEs

doing more or less the same thing, each on a different part of the overall data;

easier to manage complexity this way too.

→ “Single Program, Multiple Data” paradigm. Good fit, too, with hardware for

large-scale parallelism.

• But typically they don’t all do exactly the same thing, so you need some way

to have different UEs do slightly different things.



CSCI 3366 November 6, 2013

Slide 7

SPMD — Solution Elements

• All UEs execute the same (source) code: Initialize, obtain unique ID, compute,

finalize.

• Based on ID, different UEs can do different things. (Typically the differences

are modest — e.g., only one process prints results — but in the extreme, you

get “MPMD” effect.)

• Typically, problem data includes:

– Data structures shared by all UEs. If no shared memory, must replicate,

possibly recombine at end.

– Data structures logically distributed among UEs. Idea is to partition data in

a way that matches how the computation is partitioned.

Slide 8

SPMD — Examples and Uses

• Very, very common, especially for MPI programs. Particularly good for Task

Parallelism and Geometric Decomposition problems.

• Example — numerical integration:

– Logical choice for MPI. One choice we could make, though, is how to

partition data (loop iterations) among UEs — by blocks, or cyclically? Only

one “shared” variable — sum being computed. Notice that in effect we

replicate the variable, and recombine at the end.

– Can do something in similar in OpenMP (another version of example).



CSCI 3366 November 6, 2013

Slide 9

Loop Parallelism — Context/Forces

• Programs in traditional application areas for parallel programming — science

and engineering — mostly loop-based. Optimizing loops has a long history —

first vectorizing, then parallelizing.

• Particularly appealing approach when a sequential program already exists,

and you want to convert (“parallelize”) it. Sometimes conversion can be done

one loop at a time — easier to develop/test/debug.

Slide 10

Loop Parallelism — Solution Elements

• Find computationally intensive loops. (No point, for example, in spending a lot

of time parallelizing initialization code.)

• Eliminate loop-carried dependencies (e.g., replicating variables so each UE

has a copy).

• Parallelize loops — arrange for iterations to be distributed among UEs.

• Optimize loop “schedule” (how iterations are mapped to UEs).



CSCI 3366 November 6, 2013

Slide 11

Loop Parallelism — Examples and Uses

• Probably the second most common, especially for OpenMP programs.

Particularly good for Task Parallelism and Geometric Decomposition

problems.

• Example — numerical integration in OpenMP (earlier version).

Slide 12

Master/Worker — Context/Forces

• For applications where it’s easy to tell how to split up the computational load

to get “good load balance”, previous two patterns usually work well.

• But for some applications, it’s not so obvious how to do this — maybe not

really possible, if work per task varies a lot and is not predictable, or if target

platform includes PEs with different capabilities.



CSCI 3366 November 6, 2013

Slide 13

Master/Worker — Solution Elements

• Basic idea — one or more workers that execute tasks, master that manages

things.

• “Bag of tasks” represents tasks yet to be done. Typically created by master

process; often implemented as shared queue. Workers can pull elements

from it directly, or can communicate with master to get new tasks.

• Typical approach shown in Fig. 5.14.

Slide 14

Master/Worker — Solution Elements, Continued

• Several potential complications:

– All tasks may be known initially, or new ones may be generated during

computation.

– Usually computation isn’t done until all tasks are done, but sometimes can

stop early.

• Several variations/optimizations:

– Master can turn into a worker after creating tasks. (Obviously more

efficient if it has nothing to do.)

– Master can be implicit, if tasks are loop iterations and dynamic scheduling

of loop iterations is possible.

• Implementation normally involves, to some extent, one of the other patterns in

this chapter.



CSCI 3366 November 6, 2013

Slide 15

Master/Worker — Examples and Uses

• Particularly good for Task Parallelism problems with completely independent

tasks (“embarrassingly parallel”).

• Example — MPI generic master/worker program.

Slide 16

Fork/Join — Context/Forces

• For applications where the number of concurrent tasks is more or less

constant, and relationships among them are simple and regular, previous

patterns usually work well.

• But for some applications, tasks are created dynamically (“forked”) and later

terminated (“joined” with forking task) as program runs. Sometimes you can

still use one of the previous patterns, but sometimes not — if relationships

among tasks are recursive (e.g., Divide and Conquer ) or irregular, or if

different tasks represent different functions (i.e., you need to do two or more

different things concurrently).

• In that case, it may make more sense to create a UE for each task —

potentially expensive, but easier to understand.



CSCI 3366 November 6, 2013

Slide 17

Fork/Join — Solution Elements

• Simple approach — one task per UE. As new tasks are created, a new UE is

created for each; when the task finishes, the UE is destroyed. Typically the

UE that created the new task/UE waits for it to finish. Simple to understand,

but potentially inefficient.

• More complicated approach — pool of UEs and queue of tasks, with UEs

grabbing new tasks out of the queue as they finish their old tasks. Potentially

more efficient, but more complicated to program and understand.

Slide 18

Fork/Join — Examples and Uses

• Particularly good for Divide and Conquer and Recursive Data problems.

One-task-per-UE version is OpenMP’s standard programming model

(expressed implicitly). Also matches (pre-1.5) Java’s support for

multithreading.

(Curiously enough, though, most OpenMP programs really use the simpler

Loop Parallelism.)

• Example — mergesort.



CSCI 3366 November 6, 2013

Slide 19

Supporting Structures Data Structure Patterns

• Probably not a complete list, but some examples of frequently-used ways of

sharing data:

– Shared Data (generic advice for dealing with data dependencies).

– Shared Queue (what the name suggests — mostly included as example of

applying Shared Data).

– Distributed Array (what the name suggests).

• Programming environment / library may provide support (e.g., Java has library

class(es) for shared queues).

Slide 20

Shared Queue

• Many applications — especially ones using a master/worker approach —

need a shared queue. Programming environment might provide one, or might

not. Nice example of dealing with a shared data structure anyway.

• Java code in figures 5.37 (p. 185) through 5.40 (p. 189) presents a

step-by-step approach to developing implementation.



CSCI 3366 November 6, 2013

Slide 21

Shared Queue, Continued

• Simplest approach to managing a shared data structure where concurrent

modifications might cause trouble — one-at-a-time execution. Shown in

figures 5.37 (nonblocking) and 5.38 (block-on-empty). Only tricky bits are use

of dummy first node and details of take. Reasons to become clearer later.

Usually a good idea to try simplest approach first, and only try more complex

ones if better performance is needed. (“Premature optimization is the root of

all evil.” Attributed to D. E. Knuth; may actually be C. A. R. Hoare.)

• Here, next thing to try is concurrent calls to put and take. Not too hard for

nonblocking queue — figure 5.39. Tougher for block-on-empty queue —

figure 5.40. In both cases, must be very careful.

• If still too slow, or a bottleneck for large numbers of UE, explore distributed

queue.

Slide 22

Distributed Array

• Key data structures for many scientific-computing applications are large

arrays, often 2D or 3D.

• If we have lots and lots of memory shared among UEs, and time to access an

element doesn’t depend on UE, all is well. Usually not the case. though —

obviously true for distributed-memory systems, somewhat true for NUMA

systems also.

• So — typical approach is to partition array into blocks and distribute them

among UEs. Idea is to do this to get:

– Good load balance.

– Minimum communication.

– “Clarity of abstraction”. Key idea — global indices versus local indices.

Pictures are easy to draw and understand; code can get messy.



CSCI 3366 November 6, 2013

Slide 23

Distributed Array, Continued

• Commonly used approaches (“distributions”):

– 1D block.

– 2D block.

– Block-cyclic.

• For some problems (such as heat-diffusion problem), makes sense to extend

each “local section” with “ghost boundary” containing values needed for

update.

Slide 24

Example Application — Heat-Diffusion Problem

• We’ve talked about this problem in general terms. Now look at code . . .

• OpenMP version is fairly straightforward — parallelize two inner loops, only

somewhat-tricky part is the reduction operation to compute maxdiff.

• MPI version is less straightforward — applying Distributed Array pattern to the

two big arrays is straightforward in principle but in practice full of messy

details.



CSCI 3366 November 6, 2013

Slide 25

Minute Essay

• None — sign in.


