
CSCI 3366 December 2, 2013

Slide 1

Administrivia

• Homework 4 due Wednesday.

• One more thing to do — small-scale project. Info on the Web tomorrow.

Slide 2

Distributed-Memory Programming in Java Using Sockets

• Based on client/server model.

• Server sets up “server socket” specifying port number, then waits to accept

connections. Connection generates socket.

• Client connects to server by giving name/IPA and port number — generates a

socket.

• On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.



CSCI 3366 December 2, 2013

Slide 3

Distributed-Memory Programming in Java Using RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

Slide 4

Distributed-Memory Programming in Java — Example

• Example — simplified generic master/worker program, similar to the versions

in OpenMP and MPI. (Look at those, briefly.)

• Version using sockets is relatively straightforward — server creates a new

thread for each client, only tricky bits are in making sure things are shut down

properly. Notice use of synchronized in code to ensure thread-safe

access to shared variables.

• Version using RMI is also straightforward, again except for code to shut down

properly. Notice use of synchronized in code to ensure thread-safe

access to shared variables; experiment suggests that RMI may use multiple

threads to process concurrent requests.

• (Caveat: These programs were developed under Java 1.5 so do not

necessarily reflect best practice for later releases.)



CSCI 3366 December 2, 2013

Slide 5

Java RMI — A Short How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, instances of which can be

remote objects. (So, either have the class extend a remote-object class or

use a static method of a remote-object class.) Notice that the class can

also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• (Continued . . . )

Slide 6

Java RMI — A Short How-To, Continued

• Compile as usual.

• Make .class files network-accessible. (There are other options, but this is

simplest.)

• Start rmiregistry.

• Run server and clients as usual.



CSCI 3366 December 2, 2013

Slide 7

Distributed-Memory Java and Implementation
Mechanisms

• Very similar to MPI, really — UE management is outside the scope of the

libraries, synchronization is implicit. For sockets, communication is explicit; for

RMI, implicit.

Slide 8

Minute Essay

• None — sign in.


