
CSCI 3366 December 4, 2013

Slide 1

Administrivia

• Information about projects on the Web. To allow a later deadline and (I hope!)

reduce the workload, we won’t do the project presentations (unless there’s

interest). Not accepted late.

• We need a “not accepted past” deadline for other assignments. How about a

week from Monday (12/16) at 11:59pm?

Slide 2

Multithreaded Programming with POSIX Threads

• POSIX threads (“pthreads”): widely-available set of functions for

multithreaded programming, callable from C/C++.

(“POSIX” is Portable Operating System Interface, a set of IEEE standards

defining an API for UNIX-compatible systems. Implemented to varying

degrees by most UNIX-like systems; implementations also exist for other

systems — e.g., Cygwin for Windows.)

• Same ideas as multithreaded programming with OpenMP and Java, but not

as nicely packaged (my opinion). At one time probably more widely available

than OpenMP compilers, though that has probably changed with gcc

OpenMP support.



CSCI 3366 December 4, 2013

Slide 3

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to

execute and a single argument. (Yes, this is restrictive — but the single

argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to

pthread exit().

Slide 4

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join

in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),

pthread mutex destroy(), pthread mutex lock(),

pthread mutex unlock().

– Condition variables: pthread cond init(),

pthread cond destroy(), pthread cond wait(),

pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),

sem post().



CSCI 3366 December 4, 2013

Slide 5

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).

Slide 6

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.



CSCI 3366 December 4, 2013

Slide 7

C++11 Threads

• Support for multithreading is part of the C++11 standard. gcc 4.8.1

supposedly supports most of it, but not all. gcc Web site says what’s

implemented and what’s not.

• (Simple examples as time permits.)

Slide 8

Minute Essay

• None — sign in.


