
CSCI 3366 August 30, 2017

Slide 1

Administrivia

• About the textbook: Apparently Amazon.com sells a Kindle edition, and it

appears that there are free applications that can read it on most platforms

(Linux, alas, not included). If that doesn’t work for you and getting print copies

isn’t feasible, I can check about the legality of printing a paper copy.

Slide 2

Minute Essay From Last Lecture

• Not a lot to report? except book status.



CSCI 3366 August 30, 2017

Slide 3

Recap — Overview of Hardware / Software Models

• Hardware models in current use include shared-memory MIMD,

distributed-memory MIMD, and now SIMD.

• Each has a corresponding programming model (though current SIMD

platforms are still evolving).

Slide 4

What Programming Languages Support This?

• A regular sequential language, with a parallelizing compiler.

• A language designed to support parallel programming (Java, Scala, Ada,

PCN).

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads).

• A regular sequential language with some added features (OpenMP, CC++).

• For each of these categories: How attractive is it for programmers? How easy

is it to implement?



CSCI 3366 August 30, 2017

Slide 5

What Programming Languages Support This?,

Continued

• A regular sequential language with a parallelizing compiler: Attractive, but

such compilers are not easy.

• A language designed to support parallel programming (Java, Scala, Ada,

PCN): Perhaps the most expressive, but more work for programmers and

implementers.

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads): More familiar for users, easier to implement.

• A regular sequential language with some added features (OpenMP, CC++):

Also familiar for users, can be difficult to implement.

Slide 6

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many! (Table 2.1 in book has a list — and we might have missed a

few.)

• For our book we chose one of each:

– MPI (library) — a semi-standard for message-passing programming.

– OpenMP (language extension) — an emerging standard for

shared-memory programming.

– Java — widely available and might be many people’s first exposure to

parallel programming.

(If writing it now, would probably include OpenCL — possible emerging

standard for GPGPU.)

• Other popular programming environments include C++ threads, POSIX

threads (Pthreads), Win32 API, PVM, . . .



CSCI 3366 August 30, 2017

Slide 7

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”, corresponding to (we

think) steps in program design / development.

Slide 8

A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal(1)

Ttotal(P )

• What’s the best possible value you can imagine for S(P )?



CSCI 3366 August 30, 2017

Slide 9

Performance, Continued

• Best possible value for S(P )? would seem to be P , right?

• Can you think of circumstances in which you could do better (“superlinear

speedup”)?

Slide 10

Performance, Continued

• “Superlinear speedup” could happen if dividing up the computation among

processors means more of the program’s code/data can fit into memory, or

cache. Could also happen in searches, if you can stop after finding one

solution.

• What’s the worst value you can imagine for S(P )?



CSCI 3366 August 30, 2017

Slide 11

Performance, Continued

• Worst possible value would seem to be 1, right?

• Can you think of circumstances in which you’d do worse? (Hint: What do you

know so far about how the parts of the program running on different

cores/processors/machines interact?)

Slide 12

Parallel Overhead

• Many reasons why a “real” parallel program might be slower than hoped for —

even, possibly, slower than the sequential program!

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

(Sometimes can speed things up by “overlapping computation and

communication”.)

• Also, “poor load balance” may slow things down.

• (And we’re not even mentioning what happens if you don’t have exclusive

access to all processors.)



CSCI 3366 August 30, 2017

Slide 13

Performance, Continued

• Even without overhead, though, why wouldn’t we always get “perfect”

speedup (P )?

Slide 14

Amdahl’s Law

• And most “real programs” have some parts that have to be done sequentially.

Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this

limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches
1

γ
— upper bound on speedup.

(Details of math in chapter 2.)



CSCI 3366 August 30, 2017

Slide 15

What’s Next — Nuts and Bolts

• So we can start writing programs as soon as possible, next topic will be a fast

tour through the four programming environments we will use for writing

programs (C-with-OpenMP, C-with-MPI, Scala/Java, and C-with-OpenCL).

Slide 16

OpenMP

• Early work on message-passing programming resulted in many competing

programming environments — but eventually, MPI emerged as a standard.

• Similarly, initially many different programming environments for

shared-memory programming, but OpenMP emerged as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Production-quality commercial compilers appeared first. At one point, only

no-cost compilers were “research software” or in work. Support then added to

GNU compilers.



CSCI 3366 August 30, 2017

Slide 17

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable or from within program.

Slide 18

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.

• (To be continued.)



CSCI 3366 August 30, 2017

Slide 19

Minute Essay

• Any questions? otherwise just sign in.


