
CSCI 3366 September 6, 2017

Slide 1

Administrivia

• Homework 1 on the Web. First installment due next Wednesday.

Slide 2

Minute Essay From Last Lecture

• One person asked about using C++ even though examples are in C. For now

I’m going to say I’d rather you didn’t: This course tries to focus on

programming environments in which programmers have more control over

details that could influence performance, and my sense is that C++ isn’t so

much one of those. (Yes, we’ll do Java/Scala, but . . . ) But I should think about

it more.



CSCI 3366 September 6, 2017

Slide 3

OpenMP Programs — Recap/Review

• OpenMP defines some concepts and a set of extensions to three base

languages (C, C++, Fortran). These extensions include compiler directives

and library functions.

• So, OpenMP programs look like programs in the base language, plus the

directives, which are defined in a way that the code still compiles as

sequential code even without support for the directives.

Slide 4

Simple Example / Compiling and Executing

• Look at simple programs — hello.c, hello++.cpp on sample

programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processing element.



CSCI 3366 September 6, 2017

Slide 5

Sidebar — GNU Compilers on Classroom/Lab Machines

• At least two versions of GNU compiler collection installed on most machines.

– Most-recent version available in standard Scientific Linux repositories

(4.4.7).

– More-recent version directly from project Web site. Versions vary among

builds.

• To get the newest version, type

module load gcc-latest

(module avail if you don’t remember the name)

and then standard command names (gcc, g++, etc.) should give you the

latest available version. Also sets up other needed environment.

Slide 6

Sidebar — make and makefiles

• Compiling with non-default options (as you must do to compile OpenMP

programs with gcc) can become tedious.

• make can help. Briefly — it’s a very old UNIX tool intended to help automate

building large programs. Can be used in different ways, but one of them is

simply to make it easy to compile with non-default options.

• To use make, set up Makefile (example linked from “Sample programs”

Web page), and then type make foo to compile foo.c to foo.



CSCI 3366 September 6, 2017

Slide 7

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile. To be sure it’s set in

terminal-window sessions may need to set it in .bashrc.)

• To run bar with a value for FOO:

FOO=fooval bar

Slide 8

How Do Threads Interact?

• With OpenMP, threads share an address space, so they communicate by

sharing variables. (Contrast with MPI, to be discussed next, in which

processes don’t share an address space, so to communicate they must use

messages.)

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.



CSCI 3366 September 6, 2017

Slide 9

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (Discuss.)

Slide 10

Parallel Version of Numerical Integration — Strategy

• Basic strategy seems sort of obvious? most of the processing consists of

adding up items computed in a for loop, so “parallelize” that: Parcel out

iterations of loop among threads, have each thread compute a partial sum,

and then combine partial sums.

• But it seems like there might be some issues: How to split iterations among

threads? What about shared variables?



CSCI 3366 September 6, 2017

Slide 11

Basic OpenMP Constructs

• #pragma omp parallel before a block launches a “team” of threads,

which continue until the end of the block. Code after the block executes only

after all threads have completed the block.

• #pragma omp master or #pragma omp single within a

parallel block says only one thread will do following block.

• #pragma omp for (within parallel block) says iterations of the following

for loop are split among threads. Sort of the workhorse construct for

OpenMP; many options.

Slide 12

Basic OpenMP Constructs — Parallel for

• By default, variables are shared, and semantics of initial, final values are a

little complicated.

• private can be used to give each thread its own copy of a variable.

• reduction can be used to give each thread its own copy of a variable and

have them combined (“reduced”) at end.

• schedule lets you choose how iterations are split among threads —

statically/evenly or at runtime.



CSCI 3366 September 6, 2017

Slide 13

Parallel Version of Numerical Integration — Code

• (See example code.)

Slide 14

Homework 1 — Overview

• This assignment asks you to parallelize a sequential program fairly similar to

the numerical integration example:

The sequential program estimates the value of π by simulating throwing

“darts” at a square board and counting how many fall within an inscribed

circle. (Picture?)

• The assignment will eventually ask you to do this in each of the programming

environments we’ll use, as a way of getting started with them. We’ll do it

twice, once just to get started and to discover some possibly-subtle pitfalls,

and again to address those pitfalls.



CSCI 3366 September 6, 2017

Slide 15

Synchronization Constructs

• critical — only one thread at a time executes this block of code.

(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of

parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about

them in the specification.

Slide 16

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.



CSCI 3366 September 6, 2017

Slide 17

Minute Essay

• Any questions?

• Have you been able to get access to a copy of the textbook?

• If you did an internship this past summer and you are free Tuesdays at

3:35pm, please consider responding to Dr. Zhang’s request for student

speakers. 10 minutes, no slides . . .


