
CSCI 3366 September 13, 2017

Slide 1

Administrivia

• Reminder: Homework 1 OpenMP program due today at 11:59pm. This really

is meant to be a first pass at producing a good program, so if you have

somthing that gives correct results but performs very badly — turn it in and

plan to fix it after class discussion next week.

And in general . . . If you’re not finished with a programming assignment by the

deadline, turn in what you have with a note that you’ll be submitting a beter

version later.

Please remember to mention the course and the assignment in the subject

line. No Google-Drive shares please! If working remotely, consider using

mail-files script (see “sample programs” page) to send mail from

command line (so attaching a file is easy even if it’s on the remote system).

• Reminder: Homework 1 MPI program due Monday.

Slide 2

More Administrivia

• At least one copy of textbook on reserve in the library. 1-day reserve, which I

hope will give those without their own copies a reasonable chance . . . ?

• Readings for this class and the next updated.



CSCI 3366 September 13, 2017

Slide 3

Running OpenMP and MPI Programs, Revisited

• As mentioned last time, for most if not all programs we write for this class,

we’ll be interested in finding out how they “scale” with varying numbers of

“units of execution” (processes or threads).

• To make this interesting for OpenMP, you need a machine with as many cores

as possible. It’s AOK to develop anywhere, but really it’s probably a good idea

to do final timing experiments on Dione, which has — well, supposedly 64

processing elements, though I wonder.

• To make this interesting for MPI, you need to use multiple machines; you

should probably try both with one process per machine and more than one

per machine (up to the number of cores on the machine). Of course, if you

use multiple machines they all have to be running Linux. Machines good for

this purpose are PandoraNN (NN from (01 to (08 — there is also a

Pandora00 but it’s meant as a file server).

Slide 4

MPI — Review/Recap

• You can do a lot with just a few things — initialize/finalize, simple

send/receive, simple collective communication.

• To execute programs you need mpirun, sometimes with the --prefix

flag. To run on multiple machines, either use -host and list their names

(separated by commas not spaces) or put names in a file and use

-hostfile.

• (Review numerical-integration example.)



CSCI 3366 September 13, 2017

Slide 5

Multithreaded Programming in Java — Overview

• We’ll look next at basic multithreaded programming in Java, mostly focusing

on lower-level approaches.

• Why Java? When we wrote the book it was a language many people already

knew, including Trinity CS students (after CS2). Now still popular but not used

in our required courses. We’ll use it this year partly so the examples make

sense but also as a way of giving you some exposure to another popular

language.

Slide 6

Introduction to Java for Scala Programmers

• Scala is built on top of Java and shares a common runtime environment (plus

Scala has access to Java’s huge library).

• Syntactically, however, Scala is more like C++.

• Unlike Scala (but like C/C++), Java has no REPL environment (alas). You

must compile (to “byte code”) and then execute using runtime system. (This

two-step approach works for Scala too.)

• Unlike Scala (but like C/C++), programs all have to include some “boilerplate”

lines that set things up for the main program.

• Unlike either Scala or C++, the compiler and runtime system are picky about

filenames.



CSCI 3366 September 13, 2017

Slide 7

“Hello World” in Java

• Define class Hello in file Hello.java.

• (You can use Eclipse for Java, but for short programs I don’t, and sometimes

(especially for this class) it’s better to run from the command line. So I’ll show

command-line tools only.)

• Compile with javac Hello.java. If it succeeds, generates a file

Hello.class. (To reduce clutter, add -d objectdir.)

• Execute with java Hello. (If you compiled with -d, add -cp

objectdir.)

Slide 8

Java for Scala Programmers, Continued

• Unlike either Scala, C, or C++, everything in Java is part of some class.

Regular (non-local) variables and methods are associated with instances of

the enclosing class static variables or methods are associated with the

class as a whole. (Scala’s “companion objects” provide similar functionality.)

• As in C, variables have to be declared, with a type, and declarations look

more like C/C++. No var or val.

Variable types include “primitives” (lowercase type name, similar to C

variables) and “references” (uppercase type name corresponding to a class,

similar to Scala variables). Why oh why? Attempt at efficiency.

• Syntax for function declarations is more like C/C++ than Scala.

• Much low-level syntax is the same as C/C++. Classes are the same idea but

with slightly different syntax, more similar to C++.

• (Simple example(s)?)



CSCI 3366 September 13, 2017

Slide 9

Java for Scala Programmers, Continued

• Like Scala, Java has a notion of grouping classes into packages, and syntax

is similar (maybe not a huge surprise?). Unlike Scala, the compiler and

runtime system are picky about file names and directory structure.

• At this point we can look at some ways to write multi-threaded “hello world” . . .

Slide 10

Minute Essay

• Anything interesting to report about the part of Homework 1 you’ve done? no

need to repeat (in detail anyway) what you said in the discussion you turned

in with your code.


