
CSCI 3366 September 18, 2017

Slide 1

Administrivia

• Reminder: Homework 1 MPI program due today (11:59pm).

• About reading for today: Dr. Lewis’s video lectures (Java for Scala

programmers) are a good start, but incomplete.

Slide 2

Java for Scala Programmers, Continued

• Scala uses Java’s “infrastructure” (byte code and JVM), and you’ve probably

already used, from Scala, some of Java’s library classes. Scala’s notion of

packages also comes from Java.

A notable difference is that the Java compiler is much pickier about names of

packages matching the filesystem hierarchy.

• Conceptually and with regard to syntax, however, Java may be closer to C++.



CSCI 3366 September 18, 2017

Slide 3

Java for Scala Programmers, Continued

• Variables can be “primitives” (similar to variables in C) or (references to)

objects. Variables declarations must include types. No var or val

modifiers, but final has much the same effect as val.

• As in Scala, parameter passing is strictly by value, but if what’s passed is a

reference, called method can modify the referenced object. Nothing like that

is possible with primitive types.

Slide 4

Java for Scala Programmers, Continued

• Basic object-oriented ideas (classes and inheritance) basically the same in

Java as in C++ and Scala; syntax and details are more similar to C++ than

Scala. Classes can include both regular and static members. Members

include data, methods, and (nested/inner) classes.

• Various “access modifiers” (public, private, etc.) limit accessibility of

classes and their members.

• Type-generic programming possible with “generics”. Basically the same as in

Scala, but syntax is different.



CSCI 3366 September 18, 2017

Slide 5

Java for Scala Programmers, Continued

• The exception mechanism for Java is similar to the one for Scala, with one

notable exception:

• “Unchecked” exceptions can be caught, or not, as you choose. For “checked”

exceptions, however, you must either catch them or explicitly declare that your

method can throw them. This was meant to be a good thing — forcing you to

think about exceptions that are common enough that you shouldn’t just

pretend they can’t happen — though in practice it can be annoying.

Slide 6

Java for Scala Programmers, Continued

• No multiple inheritance — inventors felt that that was more a source of

potential confusion than a help. Instead Java has “interfaces” — somewhat

similar to Scala traits, but without the ability to define variables and

(definitions of) methods. I.e., an interface is basically an API only — list of

methods plus possibly some constant values. A class can only inherit from

one superclass, but it can implement multiple interfaces.

• No function pointers, and prior to Java 8, no lambda expressions. In situations

needing either one, typical approach is to use interfaces and “anonymous

classes”.



CSCI 3366 September 18, 2017

Slide 7

Parallel Programming in Java

• Java supports multithreaded (shared-memory parallel) programming as part

of the language — synchronized keyword, wait and notify

methods of Object class, Thread class. Programs that use the GUI

classes (AWT or Swing) are multithreaded under the hood. (Scala shares this

property.) Justification probably has more to do with hiding latency than HPC,

but still useful, and versions 5.0 and beyond includes much useful library stuff.

• Java also provides support for forms of distributed-memory programming,

through library classes for networking, I/O (java.nio), and Remote

Method Invocation (RMI).

Slide 8

What Does A Multithreaded Java Program Look Like?

• Easy answer: Like a regular Java program. (In fact, any program with a

GUI . . . )

• Programming model: All threads share a common address space.

Programmer is responsible for creating threads, providing synchronization,

etc.



CSCI 3366 September 18, 2017

Slide 9

Creating Threads in Java

• Threads are all instances of Thread class (or a subclass). Pre-5.0, two

ways to create threads:

– Create a subclass of Thread (frowned on by o-o purists).

– Create a Thread using an object that implements Runnable

(preferable).

Either way, run method (of subclass of Thread, or of Runnable)

contains code for thread to execute.

• Start thread with start method. Can wait for it to finish with join.

• “Hello world” example (Hello1.java and Hello2.java on sample

programs page). (Other methods in java.util.concurrent — see

sample programs Hello3.java, Hello4.java, Hello5.java.)

Slide 10

Java from the Command Line

• Most of you probably use Eclipse to write Scala programs. This works for

Java programs too (in fact Eclipse was largely developed as a tool for Java),

but I say best to run them from the command line, where it’s easy to vary

environment variables and command-line arguments. Command to use is

java, followed by class name and any arguments. (If class files are not in

current directory, specify where they are with -classpath or -cp.)

• You can also write them using your favorite text editor compile from the

command line. Command to compile is javac. Use -d to put byte-code

files in separate directory (probably a good idea) and -cp if what you’re

compiling uses your own library code.



CSCI 3366 September 18, 2017

Slide 11

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to

variables is consistent with usual Java scoping — class/instance variables,

parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be

risky, however. So . . .

Slide 12

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and

Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run

this when you have the relevant lock” — if another thread has the lock, wait.

Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance

methods) or class (static methods). For synchronized blocks, you specify the

object.

Example — HelloSynch*.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination.

But first . . .



CSCI 3366 September 18, 2017

Slide 13

Numerical Integration Example, Revisited

• How to parallelize using Java? well, first must rewrite in Java

(NumIntSeq.java on sample programs page).

• Now rewrite to use multiple threads, based on same strategy we used for

OpenMP — split loop iterations among threads, give each its own copy of

work variables, compute sum based on “reduction” idea. Some things must

be done more explicitly in Java (making the program in some ways more like

MPI’s SPMD model); see NumIntPar1.java on sample programs page.

Notice however that this problem would make good use of

java.util.concurrent’s support for tasks/threads; see

NumIntPar2.java on sample programs page.

Slide 14

Synchronization in Java, Continued

• synchronized methods/blocks can be used to ensure that only one

thread at a time accesses some shared variable.

• For more complex synchronization problems, can use wait and notify

(or notifyAll):

wait suspends executing thread (adds to “wait set”).

notify wakes up one thread from the wait set. notifyAll wakes up all

threads in the wait set. Newly-awakened thread(s) then compete to reacquire

lock and continue execution.

Can only be done from within synchronized method/block.

Typical idiom — loop to check condition, wait.

• (More about this, and example, later.)



CSCI 3366 September 18, 2017

Slide 15

Minute Essay

• Anything interesting to report about the MPI of Homework 1? no need to

repeat (in detail anyway) what you said in the discussion you turned in with

your code, but just figuring out how to run MPI programs can be a bit of a

hurdle?


