
CSCI 3366 September 25, 2017

Slide 1

Administrivia

• Due date for Homework 2 is not soon, but it’s long, so I say start now/soon.

Slide 2

Minute Essay From Last Lecture

• (How to decide whether a RNG is “good” . . . )

• Some people mentioned just trying it in the intended application and

observing whether the results seem good. Might actually be the best way,

since a RNG that’s “good” for one application might be less so for another.

• Others mentioned checking whether the sequence is evenly distributed, or

has no repeats.

• In principle, what you want is something that seems unpredictable — but

keeping in mind that for at least some applications you do want results to be

reproducible.



CSCI 3366 September 25, 2017

Slide 3

Sidebar: gnuplot

• A tool I like for both quick interactive plots and nice-looking ones to use in

papers is gnuplot. Available on most UNIX-like systems and (I think!)

optionally for other operating systems. Home page at

gnuplot.sourceforce.net. Can do 2D and 3D plots, the former

with Cartesian or polar coordinates.

(Interestingly(?) enough, the name has nothing to do with the GNU project!)

• To start it, gnuplot. Brings up a command-line interface. Online help

available with help.

Slide 4

gnuplot, Continued

• Useful commands include plot to plot function(s) or data from file(s), set

to set various things (e.g., x and y ranges).

• Default output to terminal, but with set terminal and set output

you can instead store to a file in various formats.

• Can also put commands (plot etc.) in a file and execute batch-style, or with

load. Useful if you want to regenerate plots when data changes.

• (Examples.)



CSCI 3366 September 25, 2017

Slide 5

Homework 2 — Implementing LCG

• Implementing a 48-bit LCG function is doable in both C (with int64 t and

Java Long). Note, however, that the multiplication required to generate the

next element can overflow — which is no problem since we only want the

value mod 248, but consider what happens if the overflow produces a

negative result. Hence my suggestion to compute this with bitwise “and” (&)

rather than with %.

• Implementing the described leapfrog scheme is trickier. I decided to try it in

Scala first and discovered that while the modified constants a′ and b′ only

need to be 48 bits, computing them correctly — well, my current approach is

to use BigInt to do the computation and then convert the result back to a

Long. This should work in Java too (with suitable changes of names), and in

C . . . There’s a library called GMP that provides support for arbitrary-precision

arithmetic that looks promising. “Stay tuned”?

Slide 6

GPGPU

• Recall from overview/introduction that the SIMD (Single Instruction, Multiple

Data) model was popular in the relatively early days of parallel programming,

fell of favor, and is now making a comeback as “GPGPU” (General-Purpose

computing on Graphics Processing Units).

• Typically SIMD is a good fit for GPU hardware — but it’s worth noting that they

usually(?) have their own memory, not shared with “host” CPU, which makes

programming more complicated and has implications for performance.



CSCI 3366 September 25, 2017

Slide 7

OpenCL

• Early work on shared-memory and message-passing programming resulted

in many competing programming environments — but eventually, OpenMP

and MPI emerged as standards.

• Similarly, initially many different programming environments for GPGPU, but

OpenCL might be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives. For

OpenCL, standard defines concepts and library.

• First release 2008; evolving fairly rapidly. Meant to address not just GPGPU

but more-general problem of “heterogeneous computing” (computing using

mix of computational resources).

Slide 8

What’s an OpenCL Program Like?

• Source code in C/C++, with calls to OpenCL functions.

• Typically includes source to be compiled at runtime for whatever device is to

be used. “Device”? yes, many new terms/concepts . . . (And in context here it

means something not exactly like what it has come to mean in popular

usage!)



CSCI 3366 September 25, 2017

Slide 9

OpenCL Terms and Concepts

• Compute device — something capable of doing computations (CPU, GPU,

etc.).

• Kernel — computation to execute on device.

• Index-space — range of indices (1D or more) on which to execute kernel.

• Work-item — one execution of kernel. Grouped into work-groups.

• Compute context, program object, command queue — various aspects of

setting up environment and assigning work to devices.

• Several memory regions — host memory, local memory, etc.

Slide 10

OpenCL on Department Machines

• OpenCL implementations available for various platforms.

• The one for NVIDIA cards is part of the company’s own toolkit for GPGPU,

called CUDA. Installed on machines with NVIDIA graphics cards — Atlas

machines, Deimos.

• The one for AMD cards is also part of the company’s own toolkit, called AMD

APP SDK. Hooked into device driver for GPU, and — well, this year we

weren’t able to get it installed on the machines with AMD graphics cards.



CSCI 3366 September 25, 2017

Slide 11

Simple(?) Examples

• Maybe worth noting that you can’t really write a “hello world” program, since

compute device doesn’t necessarily have access to standard output!

• So as a first example — vector addition, briefly today and in more detail next

time.

Slide 12

Minute Essay

• None really — just sign in, unless questions?


