
CSCI 3366 October 2, 2017

Slide 1

Administrivia

• In the original version of the Java examples and Homework 2, I have

everything in package csci3366sample. I’ve refactored(?) to have

package csci3366 with subpackages sample and hw2. You don’t have

to do this, but I think it makes sense?

Slide 2

Minute Essay From Last Lecture

• Some people had progress to report on this huge next homework; others

reported not starting because they had other work due. Hm. I’m having

second thoughts about not asking you to turn it in in installments!

CSCI 3366 October 2, 2017

Slide 3

OpenCL — Review/Recap

• OpenCL was intended to be very portable but also not to hide too much from

the programmer.

• As a result, programmers must deal with a lot of low-level details.

• The good news is that a lot of those details are the same from program to

program. So I wrote some library functions (see functions in utility.h).

Okay for you to use them if you promise to read and (try to) understand!

Slide 4

OpenCL Examples, Continued

• Last time we looked in some detail at an example to add vectors.

• I also wrote something I call “semi-hello”, which uses OpenCL functions to

find information about available devices and prints the result. (Review briefly.)

CSCI 3366 October 2, 2017

Slide 5

Numerical Integration in OpenCL

• What does our familiar example look like in OpenCL?

• A first thing to note is that OpenCL provides only a single-precision

floating-point type(!).

• It doesn’t seem quite right, then, to compare results with code that computes

using double precision. So I first wrote a version of the sequential code that

uses float rather than double, and

• Results were astonishingly bad! and in fact, they got worse with increasing

numbers of samples! why . . .

Slide 6

Digression: double versus float

• I did some investigation in a previous year. Problem turns out to be that at

some point in computing sum, the increments being added are so much

smaller than the current value that they just disappear.

• What to do?! I found a clever algorithm which helps quite a bit. Will this be a

problem in OpenCL? maybe or maybe not . . .

CSCI 3366 October 2, 2017

Slide 7

Numerical Integration in OpenCL, Continued

• Basic strategy — split iterations of the main processing loop among UEs and

the combine results — is the same. UEs here are work items.

• We could make each loop iteration a work item (as in the vector addition

example), but that might not work out too well — adding each tiny increment

to a larger result seems like it would be a bottleneck. So adopt same strategy

as for MPI and Java and have each work item compute several iterations.

• And then how to combine . . .

Slide 8

Numerical Integration in OpenCL, Continued

• Unlike OpenMP and MPI, OpenCL doesn’t have anything built in to help with

reduction. So we have to write our Something that complicates this example

quite a bit is that combining results is not very easy in OpenCL — nothing

built in. We can write our own (as we did in Java), but . . .

• Synchronizing among work items can be difficult: “Barrier” synchronization is

available within each work group, but there’s no way to apply it across work

groups(!).

• So our strategy . . .

CSCI 3366 October 2, 2017

Slide 9

Numerical Integration in OpenCL, Continued

• So our strategy will be multi-level . . .

• First compute a partial sum in each work item (similar to what we did in MPI

and Java).

• Then combine these into one partial sum for each work group (using barrier

synchronization — wait for all work items to compute their partial sums and

then have one work item combine them).

• Then have the host combine these per-work-group sums into the final sum.

Slide 10

Numerical Integration in OpenCL, Continued

• To do this we’ll need to work with different levels of memory:

• Sums for work items can go in an array shared among work items but local to

a work group (this is the “local memory” previously mentioned).

• Sums for work groups need to be in “global memory” (accessible to host as

well).

CSCI 3366 October 2, 2017

Slide 11

Numerical Integration in OpenCL, Continued

• One other thing to know about before looking at code: When executing kernel,

the number of work items (indices) has to evenly divide the workgroup size.

• That said, look at code . . .

• (An interesting thing about this environment is that it’s not clear what

“scalable” means. Things that could vary are number of loop iterations per

work item and workgroup size. I’ve made both of changeable via

command-line arguments.)

Slide 12

Minute Essay

• So how’s Homework 2 coming along? anything interesting to report?

• (Other questions?)

