
CSCI 3366 October 4, 2017

Slide 1

Administrivia

• Homework 2 deadline extended again, to next Wednesday. Updates in next

slide.

• Course “useful links” page has links to OpenCL documentation: OpenCL

home page links to specification that talks about concepts and has a nice

picture illustrating relationship among compute units, work items, and work

groups. “Online man pages” is a reference describing all the library routines in

detail.

Slide 2

Homework 2 Updates

• The Java program should get the number of threads from an additional

command-line argument. I think that makes more sense than an environment

variable, and I’ve updated the numerical integration example accordingly.

• The OpenCL program should also get — something about how many work

items, work groups, etc., from command-line arguments. Details coming

soon. This program may be difficult, so there may be more hints coming by

e-mail or in the writeup.

• I’m not fussy about program names, but please stick to the writeup’s

description of command-line arguments.



CSCI 3366 October 4, 2017

Slide 3

Minute Essay From Last Lecture

• Most people had started, but not all! but I strongly advise that you try to get

everything but the OpenCL part done soon.

Slide 4

Numerical Integration in OpenCL, Revisited

• (Look at sample code one more time?)



CSCI 3366 October 4, 2017

Slide 5

A Few Words About Design Patterns

• Title of our book includes the word “patterns”.

• What do we mean? “Design patterns”.

Slide 6

A Few (More) Words About Design Patterns

• Idea originated with architect Christopher Alexander (first book 1977). Briefly

— look for problems that have to be solved over and over, and try to come up

with “expert” solution, write it in a form accessible to others. Usually this

means adopting “pattern format” to use for all patterns. Characteristics of a

good pattern:

– Neat balancing of competing “forces” (tradeoffs).

– Name either tells you what it’s about, or is a good addition to vocabulary.

– “Aha!” aspect.

• First used in CS in OOD/OOP, about 1987. Really started to take off in OO

community with “Gang of Four” book (Gamma, Helms, Johnson, and

Vlissides; 1995). Now can find people writing patterns in many, many areas.

• Simple low-level example — iterator.



CSCI 3366 October 4, 2017

Slide 7

“A Pattern Language for Parallel Programming”?

• Goal of our book (and preceding work) — apply this idea in parallel

computing.

• We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

• At some point we realized we also wanted to talk about how you get from the

original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about

commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

• After much thought and discussion . . .

Slide 8

“A Pattern Language for Parallel Programming”,

Continued

• Eventually — four-layer “pattern language”. (Notice that “pattern language”

connotes common vocabulary more than grammatical structure. Not a

programming language!)

• Much work has been done to revise and extend it, primarily by Mattson and

Sanders and a group at UC Berkeley. Current status of this project — I don’t

know!



CSCI 3366 October 4, 2017

Slide 9

Overall Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design.

– Finding Concurrency — how to decompose problems, analyze

decomposition.

– Algorithm Structure — high-level program structures.

– Supporting Structures — program structures, data structures.

– Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

• Idea is that you start at the top, work your way down, possibly with some

backtracking.

Slide 10

Finding Concurrency — Preview

• Decomposition patterns (Task Decomposition, Data Decomposition): Break

problem into tasks that maybe can execute concurrently.

• Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

• Design Evaluation: Review what you have so far, possibly backtrack.



CSCI 3366 October 4, 2017

Slide 11

Algorithm Structure — Preview

• Task Parallelism — decompose problem into lots of tasks, independent or

nearly so. Example: numerical integration.

• Divide and Conquer — decompose recursively as in divide-and-conquer

algorithms. Examples: quicksort, mergesort.

• Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

• Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.

• Pipeline — decompose based on assembly-line analogy.

• Event-Based Coordination — decompose problem into entities interacting

asynchronously.

Slide 12

Supporting Structures — Preview

• Program structure patterns:

– SPMD (Single Program, Multiple Data) — “like an MPI program”.

– Loop Parallelism — “like an OpenMP program”.

– Master/Worker — like the name suggests.

– Fork/Join — when none of the others fits.

• Data structure patterns:

– Shared Data — generic advice for dealing with data dependencies.

– Shared Queue — example of applying Shared Data).

– Distributed Array.



CSCI 3366 October 4, 2017

Slide 13

Implementation Mechanisms — Preview

• Generic discussion of “building blocks” for parallel programming — analogous

to assignment, if/then/else, loops in procedural programming languages.

(Can think of this as “what basic questions do I ask about a new parallel

programming environment?”)

• Three basic categories:

– UE management.

– Synchronization.

– Communication.

Slide 14

Minute Essay

• Have you encountered design patterns previously? maybe in another course,

or in other work? (Where?)


