CSCI 3366 October 4, 2017

Administrivia

e Homework 2 deadline extended again, to next Wednesday. Updates in next

slide.

e Course “useful links” page has links to OpenCL documentation: OpenCL
home page links to specification that talks about concepts and has a nice

Slide 1 picture illustrating relationship among compute units, work items, and work

groups. “Online man pages” is a reference describing all the library routines in

detail.

Homework 2 Updates

e The Java program should get the number of threads from an additional
command-line argument. | think that makes more sense than an environment

variable, and I've updated the numerical integration example accordingly.

e The OpenCL program should also get — something about how many work
Slide 2 items, work groups, etc., from command-line arguments. Details coming
soon. This program may be difficult, so there may be more hints coming by

e-mail or in the writeup.

e I'm not fussy about program names, but please stick to the writeup’s
description of command-line arguments.




CSCI 3366 October 4, 2017

Minute Essay From Last Lecture

e Most people had started, but not all! but | strongly advise that you try to get
everything but the OpenCL part done soon.

Slide 3

4 )

Numerical Integration in OpenCL, Revisited

o (Look at sample code one more time?)

Slide 4




CSCI 3366 October 4, 2017

A Few Words About Design Patterns

e Title of our book includes the word “patterns”.

o What do we mean? “Design patterns”.

Slide 5

4 . )
A Few (More) Words About Design Patterns

e |dea originated with architect Christopher Alexander (first book 1977). Briefly
— look for problems that have to be solved over and over, and try to come up
with “expert” solution, write it in a form accessible to others. Usually this
means adopting “pattern format” to use for all patterns. Characteristics of a
good pattern:

Slide 6
— Neat balancing of competing “forces” (tradeoffs).

— Name either tells you what it’s about, or is a good addition to vocabulary.
— “Aha!” aspect.

e First used in CS in OOD/OOP, about 1987. Really started to take off in OO
community with “Gang of Four” book (Gamma, Helms, Johnson, and
Vlissides; 1995). Now can find people writing patterns in many, many areas.

e Simple low-level example — iterator.




CSCI 3366 October 4, 2017

~N

“A Pattern Language for Parallel Programming”?

e Goal of our book (and preceding work) — apply this idea in parallel

computing.

o We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

Slide 7 e At some point we realized we also wanted to talk about how you get from the
original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about
commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

e After much thought and discussion . ..

“A Pattern Language for Parallel Programming”,
Continued

e Eventually — four-layer “pattern language”. (Notice that “pattern language”
connotes common vocabulary more than grammatical structure. Not a

programming language!)

Slide 8 e Much work has been done to revise and extend it, primarily by Mattson and
Sanders and a group at UC Berkeley. Current status of this project — | don’t

know!




CSCI 3366 October 4, 2017

Overall Organization of Our Pattern Language

e Four “design spaces” corresponding to phases in design.

— Finding Concurrency — how to decompose problems, analyze
decomposition.

— Algorithm Structure — high-level program structures.

Slide 9 — Supporting Structures — program structures, data structures.

— Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

e |dea is that you start at the top, work your way down, possibly with some
backtracking.

Finding Concurrency — Preview

o Decomposition patterns (Task Decomposition, Data Decomposition): Break
problem into tasks that maybe can execute concurrently.

e Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

Slide 10 e Design Evaluation: Review what you have so far, possibly backtrack.




CSCI 3366 October 4, 2017

Algorithm Structure — Preview

® Task Parallelism — decompose problem into lots of tasks, independent or
nearly so. Example: numerical integration.

e Divide and Conquer — decompose recursively as in divide-and-conquer
algorithms. Examples: quicksort, mergesort.

Slide 11 o Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

® Recursive Data — rethink computation to expose unexpected concurrency.
Ignore for now.

® Pipeline — decompose based on assembly-line analogy.

e Event-Based Coordination — decompose problem into entities interacting
asynchronously.

Supporting Structures — Preview

e Program structure patterns:
— SPMD (Single Program, Multiple Data) — “like an MPI program”.
— Loop Parallelism — “like an OpenMP program”.
— Master/Worker — like the name suggests.

Slide 12 — Fork/Join — when none of the others fits.

e Data structure patterns:
— Shared Data — generic advice for dealing with data dependencies.
— Shared Queue — example of applying Shared Data).
— Distributed Array.




CSCI 3366 October 4, 2017

~N

Implementation Mechanisms — Preview

e Generic discussion of “building blocks” for parallel programming — analogous
to assignment, if/then/else, loops in procedural programming languages.
(Can think of this as “what basic questions do | ask about a new parallel
programming environment?”)

Slide 13 e Three basic categories:

— UE management.

— Synchronization.

— Communication.

4 )

e Have you encountered design patterns previously? maybe in another course,

or in other work? (Where?)

Slide 14




