
CSCI 3366 October 9, 2017

Slide 1

Administrivia

• Reminder: Homework 2 due Wednesday. (Or should it be extended to next

Monday?)

Slide 2

Minute Essay From Last Lecture

• Many people (but not all!) had some exposure to design patterns, usually

from Game Development or Web Applications courses.

CSCI 3366 October 9, 2017

Slide 3

Example Applications

• Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

Slide 4

Example — Molecular Dynamics

• Goal is to simulate what happens to large molecule. Of interest, e.g., in

modeling how a drug interacts with a protein.

• Approach is to treat molecule as a collection of balls (atoms) connected by

springs (chemical bonds). Then do “standard time-stepping” — divide time

into discrete steps, and at each step use classical mechanics to figure out

new positions for atoms based on current positions and forces among them.

In more details . . .

CSCI 3366 October 9, 2017

Slide 5

Molecular Dynamics — Computation

• At each time step:

– Compute forces (vibrational and rotational) on atoms caused by chemical

bonds between them. Short-range interaction, so not too much

computation here.

– Compute forces on atoms caused by their electrical charges. Potentially

must consider all pairs of atoms, so lots of computation here.

– Use forces to update atoms’ positions and velocities.

– Compute other physical properties of the system — e.g., energies.

• To reduce the computational load, can limit computation of

electrical-charge-induced forces to atoms that are “close”. To do this,

calculate for each atom a list of “neighbors”. If time steps are short, atoms

don’t move much, and we don’t have to do this every step.

Slide 6

Molecular Dynamics Pseudocode

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps

vibrational_forces (N, atoms, forces)

rotational_forces (N, atoms, forces)

neighbor_list (N, atoms, neighbors)

non_bonded_forces (N, atoms, neighbors, forces)

update_atom_positions_and_velocities

(N, atoms, velocities, forces)

physical_properties (... Lots of stuff ...)

end loop

CSCI 3366 October 9, 2017

Slide 7

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))

forceY = non_bond_force(atoms(2,i), atoms(2,j))

forceZ = non_bond_force(atoms(3,i), atoms(3,j))

force(1,i) += forceX; force(1,j) -= forceX;

force(2,i) += forceY; force(2,j) -= forceY;

force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]

end loop [i]

end function non_bonded_forces

Slide 8

Example — Heat Diffusion

• A simple example, representative of a big class of scientific-computing

applications — “heat distribution problem”.

• Goal is to simulate what happens when two ends of a pipe are put in contact

with things at different (constant) temperatures — pipe conducts heat, its

temperature changes over time, eventually converging on a smooth gradient.

• Can model mathematically how temperature in pipe changes over time using

partial differential equations.

• Can approximate solution by “discretizing” — spatially and with regard to time.

CSCI 3366 October 9, 2017

Slide 9

Heat Diffusion Code

double *uk = malloc(sizeof(double) * NX);

double *ukp1 = malloc(sizeof(double) * NX);

double *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

double maxdiff, diff;

initialize(uk, ukp1);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k) {

/* compute new values */

for (int i = 1; i < NX-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* check for convergence */

maxdiff = 0.0;

for (int i = 1; i < NX-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if (diff > maxdiff) maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);

}

Slide 10

Finding Concurrency Design Space

• Starting point in our grand strategy for developing parallel applications.

Overall idea — capture how experienced parallel programmers think about

initial design of parallel applications. Might not be necessary if clear match

between application and an Algorithm Structure pattern.

• Idea is to work through three groups of patterns in sequence (possibly with

backtracking):

– Decomposition patterns (Task Decomposition, Data Decomposition):

Break problem into tasks that maybe can execute concurrently.

– Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

– Design Evaluation: Review what you have so far, possibly backtrack.

• Keep in mind — best to focus attention on computationally intensive parts of

problem.

CSCI 3366 October 9, 2017

Slide 11

Task-Based Versus Data-Based Decomposition

• Two basic approaches to decomposing a problem — task-based and

data-based. Usually one will seem more logical than the other, but may need

to think through both.

• Either way, you’ll look at both tasks and data; difference is in which you look at

first, and then the other follows.

Slide 12

Task Decomposition

• Goal here is to break up (some of) computation into “tasks” — logical

elements of overall computation that might be independent enough to do

concurrently.

• At this stage, try to stay abstract and portable; also try to identify lots of tasks

(can always recombine them later if too many), as independent of each other

as possible.

• Places to look for tasks include groups of function calls (e.g., in

divide-and-conquer strategy), loop iterations (e.g., many examples we’ve

discussed).

• Simple example — matrix multiplication.

• Once you have this, consider data related to each task (Data Decomposition).

CSCI 3366 October 9, 2017

Slide 13

Data Decomposition

• Goal here is to break up (some of) problem data into parts (“chunks”) that can

be operated on concurrently. Good choice if most computation consists of

updates to big data structure(s).

• Again, try to stay abstract and portable; also try to “parameterize”

decomposition so you can easily try various choices at runtime.

• Data structures to look at include arrays, recursive structures such as trees.

• Simple example — matrix multiplication.

• Once you have this, consider computation related to each chunk of data (Task

Decomposition).

Slide 14

Minute Essay

• None really — sign in. (Unless something interesting to report about

Homework 2?)

