
CSCI 3366 October 30, 2017

Slide 1

Administrivia

• Homework 3 on the Web. Due next week. One more regular homework

coming, and then we’ll use whatever time remains for projects.

Slide 2

Heat-Diffusion Problem — Review/Recap

• Recall example code from last time — sequential code, OpenMP parallel

versions, MPI parallel version.

• MPI version seemed to hang when run on multiple machines. In fact it does

not, but it does take a long time with the parameters I was using in class.

Why? well, to get inputs such that the computation converges, and time is

long enough to make parallelization attractive, I made the number of steps

large. Was that really a good idea?



CSCI 3366 October 30, 2017

Slide 3

Heat-Diffusion Problem, Continued

• MPI version has another complication, namely how to write output.

• One way would be to have each process print “its” values to a separate file,

and then leave it up to the user to merge them.

• Another way is to do all output from one process, say process 0. Then other

processes send “their” values to process 0. (Look at code . . . )

Slide 4

Heat-Diffusion Problem, One More Thing

• For this problem the total amount of data exchanged that needs to be

sort-of-shared among UEs is small, but for other problems, particularly

involving 2D etc. data structures, maybe not. So a sidebar about MPI . . .



CSCI 3366 October 30, 2017

Slide 5

Sidebar: Not-So-Simple Point-to-Point Communication in

MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s useful to be able to overlap

computation and communication.

• So MPI offers several other kinds of send/receive functions . . .

Slide 6

Not-So-Simple Point-to-Point Communication in MPI,

Continued

• Synchronous (MPI Ssend, MPI Recv): locks both sender and receiver

until communication can occur.

• Non-blocking send/receive (MPI Isend, MPI Irecv, MPI Wait):

doesn’t block, program must explicitly test/wait.

• Persistent communication (MPI Recv init, MPI Send init,

MPI Start, MPI Wait): allows setting up reusable path for

commmunication.

• Which is faster/better? probably best to try them and find out. (Sample

programs exchange*. Also look at one more solution to heat-diffusion

problem.)



CSCI 3366 October 30, 2017

Slide 7

Heat-Diffusion Problem — OpenCL Version?

• Curiously enough(?), this problem seems less amenable to an OpenCL

solution, because different work items need to communicate. “Hm!”?

• (Maybe later.)

Slide 8

Homework 3

• Assignment is to complete and then parallelize a simple text-interface

program for Conway’s Game of Life (do all of you know about this?).

• OpenMP should be fairly easy. MPI is harder, but use heat-diffusion example

as a model of sorts?



CSCI 3366 October 30, 2017

Slide 9

Minute Essay

• How’s the reading coming? is it interesting and/or useful? And — did you buy

a copy of the book, or — what? and how is that turning out?


