
CSCI 3366 November 1, 2017

Slide 1

Administrivia

• (None?)

Slide 2

Minute Essay From Last Lecture

• More people were using digital versions than print; a few said they were

renting from the bookstore (“hm!”?).

• Most are at least doing some reading and finding it at least a bit helpful (some

range there).



CSCI 3366 November 1, 2017

Slide 3

Example Application — Generic Master/Worker Program

• As an illustration of the Master/Worker program-structure pattern, try writing a

sort of mock-up of such a program, in which tasks are represented by

“sleeps” of varying lengths.

• Sequential code just generates some number of fake tasks with varying times

generated using rand(). (Look at code.)

Slide 4

Generic Master/Worker Program — OpenMP

• Parallelizing sequential code with OpenMP is fairly straightforward:

• We don’t need an explicit master thread because all it would do is assign

tasks to threads, and we can get that with omp parallel for. Here

we might want to try both static and dynamic scheduling.

• (Look at code, and notice additions to also show how tasks were distributed

among threads. Also notice use of #omp critical to avoid potential

race conditions with calls to rand(). This would not be a good strategy in

an application where those calls were a big contributor to overall program

runtime, but here they’re probably not.)



CSCI 3366 November 1, 2017

Slide 5

Generic Master/Worker Program — MPI

• Parallelizing sequential code with MPI is less straightforward:

• For static scheduling, we don’t need an explicit master; we can easily have

each process pick out “its” tasks.

• For dynamic scheduling, it does seem like we need an explicit master, so

have one process serve in that role, with a defined protocol for master/worker

interaction:

– Each worker process repeated requests a task from the master, receives

one, and executes it, continuing until it gets a task meaning “no more”.

– The master process repeatedly receives requests for a task from workers,

responds to it, and records results, until all tasks are complete. It then

sends each worker a “no more” task.

Slide 6

Generic Master/Worker Program — MPI, Continued

• (Look at code, and notice additions to also show how tasks were distributed

among processes. Also notice that the static-distribution version just

generates the whole sequence of tasks in each process and then only

executes some of them. This would not be a good strategy in an application

where generating the tasks was a big contributor to overall program runtime,

but here it’s probably not.)



CSCI 3366 November 1, 2017

Slide 7

Minute Essay

• None really — sign in.


