
CSCI 3366 November 13, 2017

Slide 1

Administrivia

• (None?)

Slide 2

Minute Essay From Last Lecture

• About Homework 3, it sounds like most people didn’t have too much trouble

with the sequential and OpenMP versions, but the MPI version was another

story. No surprise! but I hope once you get good working code you will

understand MPI much better.



CSCI 3366 November 13, 2017

Slide 3

Example Application: Matrix Multiplication

• Basic problem is easily turned into code.

• A variant of the obvious algorithm is to take a block-based approach. Can be

significantly faster, probably because it makes better of caches.

• (Look at code for both versions. Notice that it represents matrices as 1D

arrays. At least in part this is because it was originally written by a

very-old-school C programmer.)

Slide 4

Parallelization — Finding Concurrency

• Obvious decomposition for simple approach is task-based, with one task per

point. Tasks are completely independent.

• For block-based approach, may make more sense to think in terms of

decomposing data into blocks; then tasks correspond to computing blocks

of C . Again, though, they’re independent.



CSCI 3366 November 13, 2017

Slide 5

Parallelization — Algorithm Structure (Shared Memory)

• For the simple approach, we have many mostly-independent tasks, forming a

flat set rather than a hierarchy, so Task Parallelism seems like a good choice.

Block-based program is similar.

• Key design decision is how to assign tasks to UEs.

• Probably makes sense to group tasks by rows rather than individual points

and to use a simple static assignment of tasks to UEs, and group tasks by —

what? for simple approach, two obvious choices; for block-based approach,

more. Could try several and see which seems to work best.

Slide 6

Parallelization — Supporting Structures and Code

(Shared Memory)

• For program structure, Loop Parallelism makes sense.

• Code in OpenMP is straightforward.

• (Look at code.)



CSCI 3366 November 13, 2017

Slide 7

Parallelization — Algorithm Structure (Distributed

Memory)

• For distributed memory we have to think about how to distribute C and how to

duplicate/distribute A and B. Might work better to think in terms of

block-based approach and data decomposition — so Geometric

Decomposition might be a better fit.

• Key design decisions here are how to decompose data and assign chunks to

UEs, and then how to manage synchronization/communication for update

operation.

• Probably makes sense to decompose data so we can assign one block of C

to each UE — amount of work per block is pretty much constant.

Slide 8

Parallelization — Algorithm Structure (Distributed

Memory), Continued

• For each block of C , computation can be thought of a sequence of update

operations, each involving a different combination of blocks of A and B.

(Compare how this fits overall idea of Geometric Decomposition with how

heat-diffusion example fits.)

• This tells us what kind of communication we need. Simple approach is to

broadcast two blocks at each step, one for “row” and one for “column”. More

complex, but more efficient, version involves rotating blocks among

processes.



CSCI 3366 November 13, 2017

Slide 9

Parallelization — Supporting Structures (Distributed

Memory)

• For program structure, we probably want SPMD (especially if using MPI or

similar programming environment).

• Distributed Array is relevant, especially for parts of sample/test program that

initialize and print array (since they use each array element’s global indices).

Slide 10

Parallelization — Code (Distributed Memory)

• If we distribute all three arrays (which seems like a good idea), we have to

make changes in code to initialize and print as well as matrix-multiplication.

As is often the case with programs using Distributed Array, the ideas are

simple but the code inclined to be messy.

• For actual multiplication, each process will update one “chunk”, doing the

same computation done in the block-based sequential program, but with

communication operations to broadcast two blocks per step.

• (Look at code.)



CSCI 3366 November 13, 2017

Slide 11

Minute Essay

• None really — sign in?

Slide 12

Minute Essay Answer

• FIXME


