
CSCI 3366 November 29, 2017

Slide 1

Administrivia

• Remember that you’re meant to be thinking about what to do for the final

assignment in the course (the project), and before you really start working on

a project I want to hear a little about it.

Slide 2

Distributed-Memory Programming in Java — Review

• Slides from last time revised to include some useful(?) background

information. (Review.)

• (RMI example revisited.)



CSCI 3366 November 29, 2017

Slide 3

Multithreaded Programming with POSIX Threads

• POSIX threads (“pthreads”): widely-available set of functions for

multithreaded programming, callable from C/C++.

(“POSIX” is Portable Operating System Interface, a set of IEEE standards

defining an API for UNIX-compatible systems. Implemented to varying

degrees by most UNIX-like systems; implementations also exist for other

systems — e.g., Cygwin for Windows.)

• Same ideas as multithreaded programming with OpenMP and Java, but not

as nicely packaged (my opinion). At one time probably more widely available

than OpenMP compilers, though that has probably changed with gcc

OpenMP support.

Slide 4

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to

execute and a single argument. (Yes, this is restrictive — but the single

argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to

pthread exit().



CSCI 3366 November 29, 2017

Slide 5

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join

in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),

pthread mutex destroy(), pthread mutex lock(),

pthread mutex unlock().

– Condition variables: pthread cond init(),

pthread cond destroy(), pthread cond wait(),

pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),

sem post().

Slide 6

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).



CSCI 3366 November 29, 2017

Slide 7

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.

Slide 8

C++11 Threads

• Support for multithreading is part of the C++11 standard. gcc 4.8.1

supposedly supports most of it, but not all. gcc Web site says what’s

implemented and what’s not.

• Conceptually a lot like POSIX threads, but packaged more nicely.



CSCI 3366 November 29, 2017

Slide 9

C++11 Threads — UE Management

• Create a new thread with std::thread, specifying function to execute

and any number of arguments. (Better than POSIX threads!) Can even use

lambda expression for thread body. Passing parameters by reference is a little

complicated (requires std::ref).

• Thread continues until function terminates.

Slide 10

C++11 Threads — Synchronization

• Thread’s join() waits until thread finishes — similar to join in Java’s

Thread class.

• Various synchronization mechanisms:

– Mutexes (std::mutex). Wrapper class std::unique lock

provides a nice interface (no need to explicitly unlock.)

– Condition variables (condition variable):



CSCI 3366 November 29, 2017

Slide 11

Sidebar: Condition Variables

• (This is a synchronization mechanism we haven’t talked about, so a few

words.)

• A “condition variable” is a conceptually somewhat simple idea: It’s an abstract

data type representing a queue of waiting UEs (processes/threads), with two

operations wait and signal that sort of do what their names suggest.

Note that signals aren’t saved; if no UE is waiting when they happen they just

disappear.

Since they’re shared among processes/threads they can only be safely used

from within code that only allows access by one UE at a time.

• Java’s wait and notify are a similar idea (recall bounded-buffer

example), but they work on a queue of waiting threads associated with an

object, so they don’t as easily allow you to wait for a specific condition.

Slide 12

C++11 Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its arguments (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).



CSCI 3366 November 29, 2017

Slide 13

C++11 Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.

• Condition variable example.

Slide 14

Minute Essay

• Have you used Java RMI? (Dr. Lewis says he does in CS2.)

• My plan for Monday is to show my results (maybe not code) for the

homeworks and discuss. We probably have time for a little more.

Suggestions?


