
CSCI 3366 (Parallel and Distributed Programming), Fall 2019

Homework 4

Credit: 30 points.

1 Reading

Be sure you have read, or at least skimmed, chapters 1 through 5 of the textbook.

2 Overview

Your mission for this assignment is write a parallel version of mathematician John Conway’s “Game
of Life”, as described briefly in class. (You can also find more information on the Web. The
Wikipedia article seems good.)

The Game of Life is not so much a game in the usual sense as a set of rules for a cellular
automaton: There are no players, and once the initial configuration is established, everything that
happens is determined by the game’s rules. The game is “played” on a rectangular grid of cells.
Some cells are “live” (contain a simulated organism); others are “dead” (empty). At each time
step, a new configuration is computed from the old configuration according to the following rules:

• For each cell, we look at its eight neighbors (top, bottom, left, right, and the four diagonal
neighbors) and count the number of cells that are live. (Note that this count is based on the
configuration at the start of the time step.)

• A dead cell with exactly three live neighbors becomes live; otherwise it stays dead.

• A live cell with two or three live neighbors stays live; otherwise it becomes dead (of isolation
or overcrowding).

This problem clearly(?) fits our Geometric Decomposition pattern and is fairly straightforward to
parallelize. However, it’s unlikely that parallelization will improve performance unless the board
size is large, and for large boards inputting and displaying (or printing) board configurations gets
unwieldy. But it might be interesting to experiment with randomly-generated board configurations
and observe how the number of live cells changes over time (does it settle down to a stable number?
what and how soon?), so we’ll do that.

3 Details

3.1 Sequential program

(5 points)
To help you get started, I wrote a sequential C program with a simple text interface, with

command-line arguments that specify:

• input source (an input file or the keyword “random” followed by size, fraction of cells that
should initially be “live”, and seed)

• number of steps

1

http://en.wikipedia.org/wiki/Conway's_Game_of_Life


CSCI 3366 Homework 4 Fall 2019

• print interval (P means to output updated board every P steps)

• optionally, a name for an output file to contain initial and updated boards

The program prints (to standard output) only counts of “live” cells at each step; if an output file
is specified, it also writes initial and updated board configurations to it.

The starter code defines data structures, gets input, sets up the board, and writes output, but
omits the code that implements the actual algorithm. (Comments with the word “FIXME” show
you where you need to make changes/additions.)

• Code: game-of-life.c. You will also need timer.h to compile the program.

• Sample input file: input 8x8.

• Sample output file (using the above input and executing for 4 steps): output 8x8.

Start by filling in the parts of the code I left out and running the result a few times, to test that
you understand how to do the computational part of the game.

3.2 Parallel programs

(20 points)
Your next job is to write two parallel versions of this application, one for shared memory

using OpenMP and one for distributed memory using MPI. Both parallel programs should produce
exactly the same results as the original sequential program, except for timing information.

3.2.1 OpenMP program

This one should be fairly straightforward. As with the OpenMP programs for previous homeworks,
have the program get the number of threads to use from environment variable OMP NUM THREADS

and print with the timing information the number of threads used.

3.2.2 MPI program

This one is less straightforward, but doable. As with the MPI programs for previous homeworks,
have the program print with the timing information the number of processes used. Suggestions:

• Distribute the “board” among processes so that each process has a block of rows of the original
board. (For example, with two processes one process would have the top half of the board
and the other the bottom half.) (It’s somewhat more customary when distributing a 2D data
structure to distribute square blocks, but that makes exchanging boundary information much
more complicated, with MPI at least; distributing blocks of rows is simpler.)

• Have only process 0 open the output file and print to it. Other processes can send “their”
rows to process 0, which can collect and print them. Since there’s no need to do that if there’s
no output file, you might have process 0 broadcast a value indicating whether there is an
output file.

2

http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2019fall/Homeworks/HW04/Problems/game-of-life.c
http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2019fall/Homeworks/HW04/Problems/timer.h
http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2019fall/Homeworks/HW04/Problems/input_8x8
http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2019fall/Homeworks/HW04/Problems/output_8x8


CSCI 3366 Homework 4 Fall 2019

3.3 Performance of parallel programs

(5 points)
Once you have working parallel code, experiment with input values until you get a problem

size/configuration big enough to make it reasonable to hope for good speedups with multiple UEs.
(Think a little about what will affect this most — size of board, number of steps, interval between
printing results.) Then time your two parallel programs for this problem size/configuration and
different numbers of UEs and plot the results, as in Homework 3.

4 What to turn in and how

Turn in the following:

• Source code for your sequential and parallel programs.

• Results of measuring performance. For each of these programs, tell me what inputs you used
for the program, which machine(s) you ran it on, and send me:

– A plot showing how execution time depends on number of UEs.

– Input data for the plot. A text file or files is fine for this.

Submit your program source code by sending mail to bmassing@cs.trinity.edu. Send program
source as attachments. You can turn in your plots and input data as hardcopy or by e-mail; I have
a slight preference for e-mail and a definite preference for something easily readable on one of our
Linux machines — so, PDF or PNG or the like (in the past I think some students have sent me
Excel spreadsheets, which — I’d rather you didn’t). Please use a subject line that mentions the
course number and the assignment (e.g., “csci 3366 homework 4”).

5 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).1 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

3

bmassing@cs.trinity.edu


CSCI 3366 Homework 4 Fall 2019

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

6 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

4


