
CSCI 3366 (Parallel and Distributed Programming), Fall 2019

Homework 5

Credit: 20 points.

1 Reading

Be sure you have read, or at least skimmed, chapters 1 through 5 of the textbook.

2 Overview

Your main mission for this assignment is write a parallel version of the well-known sorting algorithm
quicksort, in Java. (If you don’t remember the details of quicksort, the Wikipedia article seems
reasonable. The algorithm I want you to implement is the one that sorts in place. I also like the
discussion here.)

3 Details

3.1 Sequential program

(5 points)
To help you get started, I wrote a starter program to test and time the sort:

• Code: QuickSortSeq.java. (Note that the class this defines is in package csci3366.hw4, so it
should go in a directory named csci3366/hw4.)

Comments in the code explain the command-line parameters. You will need to fill in the body of
the sort method. Feel free to find code on the Web or in a textbook (though you should try to
understand the code you use even if you don’t write it yourself), and/or to add additional methods.
(If you’ve never personally written an implementation of the quicksort algorithm, this would be a
good opportunity to do so; it’s something everyone who uses this algorithm should probably do at
some point!)

3.2 Parallel program

(10 points)
The next step is to write a parallel version of your program that allows you to specify the number

of threads with an additional command-line argument. Of course(?), the program should print the
number of threads along with timing results. You can use the mergesort example from the “sample
programs” page as a model; it’s a reasonable choice for a first implementation. Note however that,
unlike mergesort, quicksort doesn’t necessarily split the array into two pieces of roughly equal size,
so you may not get very good performance for this approach. Still, it’s a good first try and for
this assignment will be good enough for full credit. I’ll give extra credit (up to 5 points) if you do
something more sophisticated.

1

http://en.wikipedia.org/wiki/Quicksort
http://www.cs.nott.ac.uk/~nza/G5BADS03/ads7.pdf
http://www.cs.trinity.edu/~bmassing/Classes/CS3366_2019fall/Homeworks/HW05/Problems/QuickSortSeq.java


CSCI 3366 Homework 5 Fall 2019

3.3 Performance of parallel program

(5 points)
Once you have working parallel code, experiment with input values until you get a problem

size/configuration big enough to make it reasonable to hope for good speedups with multiple UEs.
(Given how quicksort works, once you find a problem size that seems big enough, you may find it
interesting to try out more than one seed.) Then time your parallel program for at least two inputs
(combination of problem size and seed) and different numbers of UEs and plot the results, as in
Homeworks 3 and 4.

4 What to turn in and how

Turn in the following:

• Source code for your sequential and parallel program.

• Results of measuring performance. For each of these programs, tell me what inputs you used
for the program, which machine(s) you ran it on, and send me:

– A plot showing how execution time depends on number of UEs.

– Input data for the plot. A text file or files is fine for this.

Submit your program source code by sending mail to bmassing@cs.trinity.edu. Send program
source as attachments. You can turn in your plots and input data as hardcopy or by e-mail; I have
a slight preference for e-mail and a definite preference for something easily readable on one of our
Linux machines — so, PDF or PNG or the like (in the past I think some students have sent me
Excel spreadsheets, which — I’d rather you didn’t). Please use a subject line that mentions the
course number and the assignment (e.g., “csci 3366 homework 5”).

5 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).1 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

2

bmassing@cs.trinity.edu


CSCI 3366 Homework 5 Fall 2019

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

6 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

3


