
CSCI 3366 September 11, 2019

Slide 1

Administrivia

• (None?)

Slide 2

Recap — Overview of Hardware / Software Models

• Hardware models in current use include shared-memory MIMD,

distributed-memory MIMD, and now SIMD (as implemented by GPUs).

• Each has a corresponding programming model (though current SIMD/GPU

platforms are still evolving).

1



CSCI 3366 September 11, 2019

Slide 3

What Programming Languages Support This?

• A regular sequential language, with a parallelizing compiler.

• A language designed to support parallel programming (e.g., Java, Scala,

Ada).

• A regular sequential language plus calls to parallel library functions (e.g.,

MPI, POSIX threads, both callable from C and others).

• A regular sequential language with some added features (e.g., OpenMP

extensions to C and others).

• Which is best? no surprise, “it depends”, maybe . . .

Slide 4

What Programming Languages Support This?,
Continued

• A regular sequential language with a parallelizing compiler: Attractive, but

such compilers not easy.

• A language designed to support parallel programming: Perhaps the most

expressive, but not all programmers are willing to learn new languages, and

implementation from scratch not trivial.

• A regular sequential language plus calls to parallel library functions: Easier

for programmers to learn, easier to implement.

• A regular sequential language with some added features: Also easier for

programmer to learn, but implementation can be tough (consider making any

addition to C++!).

2



CSCI 3366 September 11, 2019

Slide 5

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many! (Table 2.1 in book has a list — and we might have missed a

few, not to mention that the list was compiled in 2004.)

• For our book we chose one of each:

– MPI (library) — a semi-standard for message-passing programming.

– OpenMP (language extension) — an emerging (at the time) standard for

shared-memory programming.

– Java — widely available and might be many people’s first exposure to

parallel programming.

(If writing it now, we’d almost surely include something for GPGPU, possibly

OpenCL since it might be emerging as a standard.)

• Other popular programming environments include C++ threads, POSIX

threads (Pthreads), Win32 API, . . .

Slide 6

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”, corresponding to (we

think) steps in program design/development.

3



CSCI 3366 September 11, 2019

Slide 7

A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal(1)

Ttotal (P )

Example: If a program takes 10 seconds on one processor and 5 seconds on

four processors, S(4) is 2.

• What’s the best possible value you can imagine for S(P )?

Slide 8

Performance, Continued

• Best possible value for S(P )? would seem to be P , right?

• Can you think of circumstances in which you could do better (“superlinear

speedup”)?

4



CSCI 3366 September 11, 2019

Slide 9

Performance, Continued

• “Superlinear speedup” could happen if dividing up the computation among

processors means more of the program’s code/data can fit into memory, or

cache. Could also happen in searches, if you can stop after finding one

solution.

• What’s the worst value you can imagine for S(P )?

Slide 10

Performance, Continued

• Worst possible value would seem to be 1, right?

• Can you think of circumstances in which you’d do worse? (Hint: What do you

know so far about how the parts of the program running on different

cores/processors/computers interact?)

5



CSCI 3366 September 11, 2019

Slide 11

Parallel Overhead

• Many reasons why a “real” parallel program might be slower than hoped for —

even, possibly, slower than the sequential program!

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

(Sometimes can speed things up by “overlapping computation and

communication”.)

• Also, “poor load balance” may slow things down.

• (And we’re not even mentioning what happens if you don’t have exclusive

access to all the processors you’re using!)

Slide 12

Performance, Continued

• Even without overhead, though, why wouldn’t we always get “perfect”

speedup (P )?

• Well . . .

6



CSCI 3366 September 11, 2019

Slide 13

Amdahl’s Law

• Most “real programs” have some parts that have to be done sequentially.

Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this

limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches
1

γ
— upper bound on speedup.

(Details of math in chapter 2.)

Slide 14

Amdahl’s Law, Continued

• Example: 1/10 of program is not “parallelizable”. Then best speedup is 10,

i.e., wall-clock time decreases by a factor of 10.

• Nothing to sneeze at, but clearly not very satisfactory if you need more

speedup and have lots of processors to use.

7



CSCI 3366 September 11, 2019

Slide 15

What’s Next — Nuts and Bolts

• So we can start writing programs as soon as possible, next topic will be a fast

tour through the four programming environments we will use for writing

programs (C-with-OpenMP, C-with-MPI, Scala/Java, and C-with-OpenCL).

Slide 16

OpenMP

• Early work on message-passing programming resulted in many competing

programming environments — but eventually, MPI emerged as a standard.

• Similarly, initially many different programming environments for

shared-memory programming, but OpenMP emerged as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Production-quality commercial compilers appeared first. At one point, only

no-cost compilers were “research software” or in work. Support then added to

GNU compilers. (“And there was much rejoicing.”)

8



CSCI 3366 September 11, 2019

Slide 17

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable or from within program.

Slide 18

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.

9



CSCI 3366 September 11, 2019

Slide 19

Sidebar — GNU Compilers on Classroom/Lab Machines

• At least two versions of GNU compiler collection installed on most machines.

– Most-recent version available in standard Scientific Linux repositories

(4.8.5).

– More-recent version directly from project Web site. Versions vary among

builds.

• To get the newest version, type

module load gcc-latest

(module avail if you don’t remember the name)

and then standard command names (gcc, g++, etc.) should give you the

latest available version. Also sets up other needed environment.

(If you always want to do this, put in .bash profile in your home

directory.)

Slide 20

Sidebar — make and makefiles

• Compiling with non-default options (as you must do to compile OpenMP

programs with gcc) can become tedious.

• make can help. Briefly — it’s a very old UNIX tool intended to help automate

building large programs. Can be used in different ways, but one of them is

simply to make it easy to compile with non-default options.

• To use make, set up Makefile (example linked from “Sample programs”

Web page), and then type make foo to compile foo.c to foo.

10



CSCI 3366 September 11, 2019

Slide 21

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

• To just run bar with a value for FOO:

FOO=fooval ./bar

Slide 22

How Do Threads Interact?

• With OpenMP, threads share an address space, so they communicate by

sharing variables. (Contrast with MPI, to be discussed next, in which

processes don’t share an address space, so to communicate they must use

messages.)

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.

To be continued . . .

11



CSCI 3366 September 11, 2019

Slide 23

Basic OpenMP Constructs, Etc. — Preview

• #pragma omp parallel before a block launches a “team” of threads,

which continue until the end of the block. Code after the block executes only

after all threads have completed the block.

• #pragma omp master or #pragma omp single within a

parallel block says only one thread will do following block.

• #pragma omp for (within parallel block) says iterations of the following

for loop are split among threads. Sort of the workhorse construct for

OpenMP; many options.

• Several synchronization-related keywords.

• Several library functions.

Slide 24

Minute Essay

• Have you been able to get access to a copy of the textbook? the handout with

the updated appendices?

• Any questions?

12


