
CSCI 3366 September 18, 2019

Slide 1

Administrivia

• Reminder: Homework 1 (short-answer questions about Dr. Lewis’s guest

lectures) due Monday.

• Homework 2 due in two parts: OpenMP program next Wednesday. MPI

program the following Monday.

Slide 2

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. First standard

MPI 1.1, followed by MPI 2.x and 3.x. 1.1 specification is 500+ pages, and

later standards even bigger.

• Original reference implementation — MPICH (Argonne National Lab).

LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /

most popular may be OpenMPI (installed on department machines).

(Yes — OpenMP, OpenMPI, very confusing! but aside from names,

unrelated.)

1



CSCI 3366 September 18, 2019

Slide 3

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the (first) standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 4

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.

• More . . .

2



CSCI 3366 September 18, 2019

Slide 5

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.

Slide 6

Compiling and Running MPI Programs — Setup

• OpenMPI starts processes on remote machines using SSH. In order for this

to work, your account has to be set up to not prompt for a password.

• You can find instructions for setting that up linked from my home page

http:/www.cs.trinity.edu/˜bmassing.

3



CSCI 3366 September 18, 2019

Slide 7

Compiling and Running MPI Programs — Setup
Continued

• Also be aware that OpenMPI commands and functions not part of default

search path. To use them you need either

module load openmpi-default

(for the Scientific Linux default version) or

module load openmpi-latest

(for a locally-compiled version using the latest GCC and enabling more

features).

• Note that once you load one of these modules, you should have access to

man pages for all MPI commands and functions.

Slide 8

Compiling MPI Programs

• Compile with mpicc. (I say use my make file.)

• (mpicc basically invokes gcc with some extra parameters to access the

MPI include files and libraries.)

4



CSCI 3366 September 18, 2019

Slide 9

Running MPI Programs

• Can just call executable, but that only launches one process.

• Instead, use mpirun. Many many options, so very flexible, but also can be

difficult to figure out how to get it do what you want.

• Very basic usage (to start two processes):

mpirun -np 2 ./hello

• But this starts all processes on the same machine . . .

Slide 10

Running MPI Programs, Continued

• Various ways to specify where to start processes:

– -host followed by comma-separated list of values

Note however that you may need to have one machine name per process.

– -hostfile followed by name of a file containing machine names.

Note however that by default this tends to bunch up processes on first few

machines listed. To spread them around more, add -map-by node.

(This is my preference, but might be worth trying both ways and comparing

performance!)

• Also, remotely-launched programs may have trouble finding MPI library code.

A way to resolve that is with -prefix.

• My script run-pgm may be useful.

5



CSCI 3366 September 18, 2019

Slide 11

Simple Example(s)

• Look at “hello world” proggram; compile and run.

Slide 12

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.

6



CSCI 3366 September 18, 2019

Slide 13

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions:

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)

Slide 14

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

7



CSCI 3366 September 18, 2019

Slide 15

Numerical Integration, Revisited

• Recall numerical integration example, sequential version.

• How to parallelize with MPI? Can we use sort of the same strategy we used

for OpenMP, or do we need something totally different?

(Pause the video and think about it a few minutes. Record your ideas.)

Slide 16

Numerical Integration in MPI

• Same basic strategy we used for OpenMP — split up loop iterations among

UEs, have each compute local sum, combine at the end — will work here too.

But there are some differences:

• OpenMP has nice syntax for splitting loop iterations among threads;

programmer doesn’t need to do this explicitly. Not so with MPI.

• With no shared memory, no worries about shared variables. But combining

partial results is more work.

• Sample program num-int-par.c.

8



CSCI 3366 September 18, 2019

Slide 17

A Few Words About Measuring Performance

• For most if not all programs we write for this class, we’ll be interested in

finding out how they “scale” with varying numbers of UEs. To make this

interesting you need to try it on a platform where you can vary that a lot.

Classroom machines are probably not ideal for this; Dione (old and slow but

lots of cores) and the Pandora cluster better. For specifics of all

classroom/lab machines, see “Specifics” in

https://sites.google.com/trinity.edu/csci-department-computers/

• Probably smart to re-run experiments at least twice so you have some idea of

whether times are repeatable. To be really careful should probably run several

times (four? five?) and average.

Slide 18

Minute Essay

• What were your initial thoughts about how to “parallelize” the numerical

integration example in MPI? does what I propose make sense to you?

• Questions?

9


