
CSCI 3366 September 23, 2019

Slide 1

Administrivia

• Homework 2, both parts, now due next Monday.

Slide 2

Multithreaded Programming in Java — Overview

• We’ll look next at basic multithreaded programming in Java, mostly focusing

on lower-level approaches.

• Why Java? When we wrote the book it was a language many people already

knew, including Trinity CS students (after CS2). Now still popular but not used

in our required courses. So why . . .

1



CSCI 3366 September 23, 2019

Slide 3

Java in This Course

• Students no longer come into this course knowing some Java, but I say

there’s reason to use it anyway:

• Some examples make more sense if you know a little Java.

• Even limited exposure to another popular language could be an asset.

• Am I trying to teach you Java? not really — “just enough to be dangerous”,

i.e., enough to understand examples and to adapt starter/example code.

• Dr. Lewis has a partial set of video lectures (“reading” for today), which you

may find helpful.

Slide 4

Introduction to Java for People Who Know Scala and C

• Scala is built on top of Java and shares a common runtime environment.

Conceptually similar in many way.

• Syntactically, however, Java is more like C in many ways. (Once I could say

“more like C++”, but C++ is evolving . . . )

• And then the language just has some quirks all its own . . .

2



CSCI 3366 September 23, 2019

Slide 5

How Java is Like Scala

• Designed to protect programmers from themselves — memory management

via garbage collection, many errors throw exceptions.

• Huge standard library.

• Support for object-oriented programming. Prior to Java 8, however, support

for functional programming imperfect at best. (And I won’t discuss Java 8.)

Slide 6

How Java is Like C

• No REPL environment (alas). Must compile (to “byte code”) and then execute

using runtime system.

• Programs all have to include some “boilerplate” lines that set things up for the

main program.

• Most syntax closer to C than Scala. Statements must end with semicolons.

• Must specify a type when declaring variables; no val versus var distinction

(but there is final).

3



CSCI 3366 September 23, 2019

Slide 7

Java and Object-Oriented Programming

• Basic object-oriented ideas (classes and inheritance) mostly the same in Java

as in C++ and Scala; syntax and details are more similar to C++ than Scala.

• Classes can include both regular and static members. (static

members akin to Scala companion objects.) Members include data, methods,

and (nested/inner) classes.

• Various “access modifiers” (public, private, etc.) limit accessibility of

classes and their members.

• Classes can be grouped into packages, as in Scala.

Slide 8

Java and Object-Oriented Programming, Continued

• Type-generic programming possible; syntax more like C++ than Scala.

• No multiple inheritance. C++ has this. Scala doesn’t, but allows “traits”. Java

has “interfaces”, akin to limited version of Scala traits. (Traits can have

variables, method code; interfaces are purely an API — method declarations

— plus maybe constants.)

4



CSCI 3366 September 23, 2019

Slide 9

Java Peculiarities

• Everything in Java is part of some class; no free-standing functions.

• Variable types include “primitives” (lowercase type name, similar to C

variables) and “references” (uppercase type name corresponding to a class,

similar to Scala variables). Why oh why? Attempt at efficiency.

• No function pointers, and prior to Java 8, no support for functions as

first-class objects or “lambda expressions”. Workaround is to use interfaces

and (sometimes) “anonymous classes”. Example when we talk about defining

threads shortly.

Slide 10

Java Peculiarities, Continued

• Exception mechanism similar to the one for Scala, but :

“Unchecked” exceptions can be caught, or not, as you choose. For “checked”

exceptions, however, must either catch them or explicitly declare that your

method can throw them. Meant to be a good thing — forcing you to think

about exceptions that are common enough that you shouldn’t just pretend

they can’t happen — though in practice sometimes annoying.

• Compiler picky about names: Only one public class per file, and name of file

must match name of class.

• Runtime system picky about directory structure; must match package

structure.

5



CSCI 3366 September 23, 2019

Slide 11

“Hello World” in Java

• Define class Hello in file Hello.java.

• (You can use Eclipse for Java, but for short programs I don’t, and sometimes

(especially for this class) it’s better to run from the command line. So I’ll show

command-line tools only. If you really really like Eclipse you might consider

using it to write code but then executing from command line.)

• Compile with javac Hello.java. If it succeeds, generates a file

Hello.class. (To reduce clutter, add -d objectdir.)

• Execute with java Hello. (If you compiled with -d, add -cp

objectdir.)

Slide 12

Parallel Programming in Java

• Java supports multithreaded (shared-memory parallel) programming as part

of the language — synchronized keyword, wait and notify

methods of Object class, Thread class. Programs that use GUI libraries

multithreaded under the hood. (Scala shares this property.) Justification

probably has more to do with hiding latency than HPC, but still useful, and

versions 5.0 and beyond includes much useful library stuff.

• Java also provides support for forms of distributed-memory programming,

through library classes for networking, I/O (java.nio), and Remote

Method Invocation (RMI).

6



CSCI 3366 September 23, 2019

Slide 13

What Does A Multithreaded Java Program Look Like?

• Easy answer: Like a regular Java program.

• Programming model: All threads share a common address space.

Programmer is responsible for creating threads, providing synchronization,

etc.

Slide 14

Creating Threads in Java

• Threads are all instances of Thread class (or a subclass). Pre-5.0, two

ways to create threads:

– Create a subclass of Thread (frowned on by o-o purists).

– Create a Thread using an object that implements Runnable interface

(preferable).

Either way, run method (of subclass of Thread, or of Runnable)

contains code for thread to execute.

• Start thread with start method. Can wait for it to finish with join.

• “Hello world” example (Hello1.java and Hello2.java on sample

programs page). (Other methods in java.util.concurrent — see

sample programs Hello3.java, Hello4.java, Hello5.java.)

7



CSCI 3366 September 23, 2019

Slide 15

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to

variables consistent with usual Java scoping — class/instance variables,

parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be

risky, however. So . . .

Slide 16

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and

Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run

this when you have the relevant lock” — if another thread has the lock, wait.

Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance

methods) or class (static methods). For synchronized blocks, you specify the

object.

Example — HelloSynch*.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination.

But first . . .

8



CSCI 3366 September 23, 2019

Slide 17

Numerical Integration Example, Revisited

• How to parallelize using Java? well, first must rewrite in Java

(NumIntSeq.java on sample programs page).

• Now rewrite to use multiple threads, based on same strategy we used for

OpenMP — split loop iterations among threads, give each its own copy of

work variables, compute sum based on “reduction” idea. Some things must

be done more explicitly in Java (making the program in some ways more like

MPI’s SPMD model); see NumIntPar1.java on sample programs page.

Notice however that this problem would make good use of

java.util.concurrent’s support for tasks/threads; see

NumIntPar2.java on sample programs page.

Slide 18

Synchronization in Java, Continued

• synchronized methods/blocks can be used to ensure that only one

thread at a time accesses some shared variable.

• For more complex synchronization problems, can use wait and notify

(or notifyAll):

wait suspends executing thread (adds to “wait set”).

notify wakes up one thread from the wait set. notifyAll wakes up all

threads in the wait set. Newly-awakened thread(s) then compete to reacquire

lock and continue execution.

Can only be done from within synchronized method/block.

Typical idiom — loop to check condition, wait.

• (More about this, and example, later.)

9



CSCI 3366 September 23, 2019

Slide 19

Minute Essay

• Do you have previous experience with Java?

• Did this one more version of the numerical integration example make sense?

• Questions?

10


