
CSCI 3366 October 7, 2019

Slide 1

Administrivia

• Reminder: Don’t view this one until after turning in Homework 2.

Slide 2

Homework 2 Revisited — Sequential Programs

• First step is probably to run sequential C program a few times. (Using what

machines? what parameters?)

• Do results vary depending on seed? (Yes.)

• Are results better for more samples? (Sometimes(!).)

• Next it might be interesting to rewrite in Java . . .

• Are results the same for C and Java programs? (No.)

• Does execution time make sense — fairly consistent from run to run, scales

with number of samples? (Yes.)

1



CSCI 3366 October 7, 2019

Slide 3

Homework 2 Revisited — Parallel Programs

• My idea was that you would do something very similar to what we did with

numerical integration:

– Consider each “throw a dart” operation as a task.

– Divide tasks among UEs, with each of them computing a local count.

– Combine local counts at the end, and then compute π.

• Recall that for numerical integration we got different results for different

numbers of UEs because floating-point addition is not associative. Will that

happen here? (It shouldn’t!)

Slide 4

Homework 2 Revisited — Parallel Programs, Continued

• Naive strategy doesn’t turn out well here: Programs may produce worse

results with more samples, and OpenMP programs may slow down with more

threads.

• What’s going on? basically, a naive strategy assumes that calls to rand()

are independent, just as the computations in the loop in the example are. Is

that true?

• Maybe we should step back and talk about “generating random numbers” . . .

2



CSCI 3366 October 7, 2019

Slide 5

A Little About Random Numbers

• (Canonical reference — discussion in volume 2 of Knuth’s The Art of

Computer Programming. Very mathematical. Other references may be

easier.)

• Many application areas that depend on “random” numbers (whatever we

mean by that) — simulation (of physical phenomena), sampling, numerical

analysis (Monte Carlo methods, e.g.), etc.

• Early on, people used physical methods (currently still in use in lotteries), and

thought about building hardware to generate “random” results. No good

large-scale solution, plus it seemed useful to be able to repeat a calculation.

• Hence need for “random number generator” (RNG) — way to generate

“random” sequences of elements from a given set (e.g., integers or doubles).

Tricky topic. Many early researchers got it wrong. Many application writers

aren’t interested in details.

Slide 6

Desirable Properties of RNG — “Randomness”

• Obviously a key goal, if tricky to define. A thought-experiment definition:

Suppose we’re generating integers in the range from 1 through d, and we let

an observer examine as much of the sequence as desired, and ask for a

guess for any other element in the sequence. If the probability of the guess

being right is more than 1/d, the sequence isn’t random.

• Also want uniformity — for each element, equal probability of getting any of

the possible values.

• For some applications, also need to consider “uniformity in higher

dimensions”: If you consider treating the sequence as sequence of points in

2D, 3D, etc., space., are the points spread out evenly?

3



CSCI 3366 October 7, 2019

Slide 7

Other Desirable Properties of RNG

• Reproducibility. For some applications, not important, or even bad. But for

many others, good to be able to repeat an experiment. Usually meet this

need with “pseudo random number generator” — algorithm that computes

sequence using initial value (seed) and definition of each element in terms of

previous element(s).

• Speed. Probably not a major goal, though, since most applications involve

lots of other calculations.

• Large cycle length. If every element depends only on the one before, once

you get the initial element again what happens? and usually that’s not good.

Slide 8

Some Popular RNG Algorithms

• Linear Congruential Generator (LCG).

xn = (axn−1 + c) mod m

m constrains cycle length (period) — usually prime or a power of 2. a and c

must be carefully chosen. Results good overall, but least significant bits

“aren’t very random”, which affects how well they work for generating points in

2D, etc., space.

• Lagged-Fibonacci Generator.

xn = (xn−j op xn−k) mod 2m, j < k

where op is a binary operator (+, ×, etc.). j and k must be carefully chosen.

Must also choose “enough” initial elements (how many depends on j and k).

4



CSCI 3366 October 7, 2019

Slide 9

Some RNG Library Functions

• C library function rand() and friends: Variant of LFG.

(Where are previous values stored?)

• Java library class Random: LCG.

(Where is previous value stored?)

Slide 10

Homework 2 Results — Recap

• Quality of results can vary depending on seed, but not in any obvious way.

Effect seems to decrease as number of samples increases, however.

• OpenMP program can produce different results for different numbers of

threads(!).

• OpenMP programs can have very poor performance — times increase for

more threads.

• MPI program can produce different results for different numbers of threads,

but performance is usually good.

5



CSCI 3366 October 7, 2019

Slide 11

RNGs and Homework 2

• Does this explain why accuracy of result might depend on choice of seed?

(Yes.)

• Does it explain why results can vary depending on number of UEs? (Is the

explanation the same for the different programming environments?)

• Does it explain why performance of OpenMP program can be disappointing?

Slide 12

Parallelizing RNGs

• RNGs are used in some applications that are compute-intensive and thus

appealing candidates for parallelization.

• How to do this?

6



CSCI 3366 October 7, 2019

Slide 13

Approaches to Parallelizing RNGs — Central Server

• Use one UE to generate sequence, have it distribute results to other UEs or

let them request them.

• Reproducible? Efficient? Other problems?

Slide 14

Approaches to Parallelizing RNGs — Central Server,
Continued

• Same sequence, but maybe not distributed same way.

• Could be inefficient / bottleneck.

7



CSCI 3366 October 7, 2019

Slide 15

Approaches to Parallelizing RNGs — Cycle Division

• Cycle division — split elements of original sequence between UEs, having

each UE generate “its” elements. Two basic schemes — “leapfrog” and “cycle

splitting”.

• Reproducible? Efficient? Other problems?

Slide 16

Approaches to Parallelizing RNGs — Cycle Division,
Continued

• Same sequence, split the same way.

• Could be other problems – subsequences might not be “random”.

• Also could be very inefficient, depending on how each UE computes its

elements (e.g., for leapfrogging, simplest approach is just to generate all

elements and skip some).

8



CSCI 3366 October 7, 2019

Slide 17

Approaches to Parallelizing RNGs — Parameterization

• Parameterization — e.g., “cycle parameterization” exploits property that some

RNGs can generate different cycles depending on seed. Idea is to

“parameterize” algorithm so UEs generate different cycles.

• Reproducible? Efficient? Other problems?

Slide 18

Approaches to Parallelizing RNGs — Parameterization,
Continued

• Depends on being able to parameterize in a way that cycles don’t overlap.

• Related to choice of seed in the first place. Figuring how to do this effectively

could be difficult.

9



CSCI 3366 October 7, 2019

Slide 19

Parallel RNG With Distributed Memory

• Thread safety not an issue. But also have no access to shared state, so each

process should probably generate sequence independently. (Central server

would work, but again, could be a bottleneck.)

• “Leapfrog” approach seems attractive.

Naive implementation would just have each process generate whole

sequence and ignore elements it doesn’t want. Good idea? (Sometimes, but

probably not for the Homework 2 problem.)

Knuth includes algorithm for generating just selected elements of LCG, based

on modifying a and c.

• Starting different processes with different seeds also seems promising. Is

there a situation in which that wouldn’t work? (Can you guarantee that

sequences don’t overlap “too much”?)

Slide 20

Parallel RNG With Shared Memory

• Thread safety an issue, but have access to shared state, which might be

attractive.

• Adaptation of “central server” idea — use regular library function, but ensure

one-at-a-time access. Good idea? (Maybe for some applications, but

probably won’t work well for Homework 2 problem.)

• Other approaches similar to distributed-memory case, but require that each

thread have its own “internal state”. Good idea? doable? (Could be a problem

if using library functions.)

10



CSCI 3366 October 7, 2019

Slide 21

RNG Functions Revisited

• C library function rand() and friends: Variant of LFG. Can specify seed,

but internal state apparently hidden. rand r() allows keeping internal

state in user-provided buffer.

• Java library class Random: LCG. Can specify seed. Not known whether

different instances share internal state, but seems unlikely.

• Or one can write one’s own . . . (And that’s what Homework 3 will ask you to

do. But in real-world situations, it’s probably better to investigate good

third-party libraries, commercial if need be.)

Slide 22

Improving on Homework 2 Solutions

• How do we improve performance?

(Should be straightforward — any revised algorithm that doesn’t use a shared

state should help.)

• How do we improve accuracy?

(Should be straightforward — any revised algorithm that doesn’t generate the

same sequence for every UE should help at least a little.)

• And how will we know a revised solution is better?

(Measure carefully / systematically.)

11



CSCI 3366 October 7, 2019

Slide 23

Homework 3 — Implementing LCG

• Implementing a 48-bit LCG function is doable in both C (with int64 t and

Java Long). Note, however, that the multiplication required to generate the

next element can overflow — which is no problem since we only want the

value mod 248, but consider what happens if the overflow produces a

negative result. Hence my suggestion to compute this with bitwise AND (&)

rather than with %.

• Implementing the described leapfrog scheme is trickier, and beyond the

scope of this course, but I got interested a while back . . .

Slide 24

Homework 3 — Implementing LCG With Leapfrogging

• Algorithm seems straightforward (compute and use modified constants a′ and

b′, but when I tried implementing in Scala, I found I needed BigInt to

compute them correctly (they’re 48 bits and can be Longs, but some

intermediate results apparently need to be larger?).

• Same implementation works in Java, using its analogous classes (e.g.,

BigInteger).

• And in C . . . Same approach works, using GMP library for arbitrary-precision

arithmetic.

• You don’t have to do this, though if you’re curious and want some extra points,

go for it. Assignment includes a little starter code for the C version.

12



CSCI 3366 October 7, 2019

Slide 25

Minute Essay

• Does this discussion help you understand better anything about your

Homework 2 results?

13


