
CSCI 3366 November 4, 2019

Slide 1

Administrivia

• (None? Reminder about Homework 4?)

• I hope to grade Homework 3 soon.

Slide 2

Example Applications: Numerical Integration, Heat

Diffusion

• We’ve looked at code for both. Anything we should look at again? maybe the

code for the MPI version of the heat diffusion problem?

1

CSCI 3366 November 4, 2019

Slide 3

Example Application: Generic Master/Worker Program
(Review)

• As an illustration of the Master/Worker program-structure pattern, try writing a

sort of mock-up of such a program, in which tasks are represented by

“sleeps” of varying lengths.

• Sequential code just generates some number of fake tasks with varying times

generated using rand(). (Look at code.)

Slide 4

Generic Master/Worker Program — OpenMP

• Parallelizing sequential code with OpenMP is fairly straightforward:

• We don’t need an explicit master thread because all it would do is assign

tasks to threads, and we can get that with omp parallel for. Here

we might want to try both static and dynamic scheduling.

• (Look at code, and notice additions to also show how tasks were distributed

among threads. Also notice use of #omp critical to avoid potential

race conditions with calls to rand(). Not a good strategy in an application

where those calls were a big contributor to overall program runtime, but here

they’re probably not.)

2

CSCI 3366 November 4, 2019

Slide 5

Generic Master/Worker Program — MPI

• Parallelizing sequential code with MPI is less straightforward:

• For static scheduling, we don’t need an explicit master; we can easily have

each process pick out “its” tasks.

• For dynamic scheduling, it does seem like we need an explicit master, so

have one process serve in that role, with a defined protocol for master/worker

interaction:

– Each worker process repeated requests a task from the master, receives

one, and executes it, continuing until it gets a task meaning “no more”.

– The master process repeatedly receives requests for a task from workers,

responds to it, and records results, until all tasks are complete. It then

sends each worker a “no more” task.

Slide 6

Generic Master/Worker Program — MPI, Continued

• (Look at code, and notice additions to also show how tasks were distributed

among processes. Also notice that the static-distribution version just

generates the whole sequence of tasks in each process and then only

executes some of them. Not a good strategy in an application where

generating the tasks was a big contributor to overall program runtime, but

here it’s probably not.)

3

CSCI 3366 November 4, 2019

Slide 7

Example Application: Mandelbrot Set

• For each point c = a+ bi in the complex plane, look at the sequence

z0, z1, z2, . . ., where
z0 = 0

zk+1 = zk
2 + c

• For some points, this sequence is “quasi-stable” (|zk| bounded); for others,

it’s not.

• We can get interesting pictures by discretizing and then computing, for each

point, how long it takes this sequence to “diverge”.

Slide 8

Parallelization — Understanding the Problem

• Code is nested loops over points in a 2D space, where at each point we

calculate until divergence / maximum iterations and then plot the result (to

something implicitly or explicitly shared).

• Consider parallelizing. . . (To be continued.)

4

CSCI 3366 November 4, 2019

Slide 9

Minute Essay

• How is Homework 4 coming?

5

