
CSCI 3366 November 13, 2019

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 coming soon. (Preview: Parallelize Java quicksort. I will show

Java mergesort in class soon.)

Slide 2

Example Application: Matrix Multiplication

• Basic problem is straightforward: For two N by N matrices A and B,

compute the matrix product C with elements defined thus (assuming 0-based

indexing):

ci,j =

N−1∑

k=0

ai,k · bk,j

(Actually A and B don’t have to be square and the same size, but for the

moment let’s assume they are.)

• Simple approach to calculating this is obvious — just do the above calculation

for all i and j between 0 and N − 1.

• Less obvious approach: Decompose A, B, and C into blocks and think of

the calculation in terms of these blocks (equation similar to the above, but for

blocks rather than individual elements).

Why? often makes better use of cache and therefore is faster.

1



CSCI 3366 November 13, 2019

Slide 3

Sidebar: Info About Hardware

• My Web site

https://sites.google.com/trinity.edu/

csci-department-computers/specifics

has some information about our equipment.

• Linux pseudofile /proc/cpuinfo has more about processors.

• Command lstopo shows info about caches etc. (First load module

hwloc-latest.)

Slide 4

Matrix Multiplication — Code

• (We looked at code last time, some.)

• 2D array represented as 1D array, to make it easier(?) to locate elements of

blocks: Each row of a block is contiguous, and rows are separated by “stride”.

• Functions to work on blocks (one to clear a block, one to multiply and add to

running total) use as arguments block start, size, stride.

• Timing can be tedious — since how this works depends on some details of

hardware (e.g., cache), try more than one type of machine, different problem

sizes. Shell scripts help! (Review data I collected. Some results make the

point. Note that times on some platforms vary from execution to execution.

No idea why! Others puzzling but at least show why multiple executions

advisable.)

2



CSCI 3366 November 13, 2019

Slide 5

Parallelization — Understanding the Problem (Review)

• In simple approach, code is just nested loops over the elements of C . A

block-based approach is slightly more complicated, though not a lot.

• Consider parallelizing for first shared-memory and then distributed-memory

environments.

Slide 6

Parallelization — Finding Concurrency

• Obvious decomposition for simple approach is task-based, with one task per

point. Tasks are completely independent.

• For block-based approach, may make more sense to think in terms of

decomposing data into blocks; then tasks correspond to computing blocks

of C . Again, though, they’re independent.

3



CSCI 3366 November 13, 2019

Slide 7

Parallelization — Algorithm Structure (Shared Memory)

• For simple approach, many mostly-independent tasks, forming a flat set

rather than a hierarchy, so Task Parallelism seems like a good choice.

Block-based program is similar.

• Key design decision is how to assign tasks to UEs. Simple static assignment

seems right, but details — ?

• For simple approach, could group tasks by rows and assign rows to UEs.

Slide 8

Parallelization — Algorithm Structure (Shared Memory),
Continued

• For block-based approach, probably want to assign (groups of) blocks to UEs:

Multithreading within block seems like might lose improvement in use of

cache?

• Giving each UE rows of blocks is simple but may limit concurrency too much.

• Giving each UE individual blocks is more trouble but less limiting.

4



CSCI 3366 November 13, 2019

Slide 9

Parallelization — Supporting Structures and Code
(Shared Memory)

• For program structure, Loop Parallelism makes sense.

• Code in OpenMP is straightforward.

• (Look at code, timing data.)

Slide 10

Parallelization — Algorithm Structure (Distributed
Memory)

• For distributed memory, have to think about how to distribute C and how to

duplicate/distribute A and B. Might work better to think in terms of

block-based approach and data decomposition — so Geometric

Decomposition might be a better fit.

• Key design decisions here are how to decompose data and assign chunks to

UEs, and then how to manage synchronization/communication for update

operation.

• Probably makes sense to decompose data so we can assign one block of C

to each UE — amount of work per block is pretty much constant.

5



CSCI 3366 November 13, 2019

Slide 11

Parallelization — Algorithm Structure (Distributed
Memory), Continued

• For each block of C , computation can be thought of a sequence of update

operations, each involving a different combination of blocks of A and B.

(Compare how this fits overall idea of Geometric Decomposition with how

heat-diffusion example fits.)

• This tells us what kind of communication we need. Simple approach is to

broadcast two blocks at each step, one for “row” and one for “column”. More

complex, but more efficient, version involves rotating blocks among

processes.

Slide 12

Parallelization — Supporting Structures (Distributed
Memory)

• For program structure, we probably want SPMD (especially if using MPI or

similar programming environment).

• Distributed Array is relevant, especially for parts of sample/test program that

initialize and print array (since they use each array element’s global indices).

6



CSCI 3366 November 13, 2019

Slide 13

Parallelization — Code (Distributed Memory)

• If we distribute all three arrays (which seems like a good idea), have to make

changes in code to initialize and print as well as matrix-multiplication. As is

often the case with programs using Distributed Array, ideas are simple but

code inclined to be messy!

• For actual multiplication, each process will update one “chunk”, doing same

computation done in the block-based sequential program, but with

communication operations to broadcast two blocks per step.

• (Look at code, timing data. Note printing strategy: Each process prints its

data, but with global indices; then can use external tools (cat, sort) to

combine. Good idea to do a small test run for correctness in addition to

timing.)

Slide 14

Minute Essay

• I had planned for the last assignment in the course to be a project, but we’re

running out of time. Should we just not do this, or do something small-scale?

(Try to think about learning outcomes as well as workload!)

7


