
CSCI 3366 November 20, 2019

Slide 1

Administrivia

• (None?)

Slide 2

Sidebar(?): Controlling Threads in Java

• Preferred method of controlling one thread from another uses “interrupted”

status. (Early version of Java provided other methods, e.g., stop — now

deprecated.)

• Set status with interrupt (instance method).

• Check status with isInterrupted (instance method) or

interrupted (static method), or by catching

InterruptedException thrown by wait, sleep, join, etc.

(Right — all of these methods potentially throw

InterruptedException, which is a “checked exception”, and in Java

you’re supposed to do something about those.)

• (Example another time.)

1



CSCI 3366 November 20, 2019

Slide 3

Example Revisited: Generic Master/Worker

• Java version of generic master/worker example not conceptually very different

from C-based versions.

• Multithreaded versions use Java Callable and Future.

• One multithreaded version distributes tasks among worker threads

round-robin style, with a shared list of tasks.

• Another multithreaded version sets up a shared queue representing a pool of

tasks yet to be done, and worker threads pull items from this pool and

process.

• Neither needs an explicit master task.

• (Look at code very briefly?)

Slide 4

Distributed-Memory Programming in Java Using Sockets

• Based on client/server model.

• Before going further, some background . . .

2



CSCI 3366 November 20, 2019

Slide 5

Stream I/O in Java

• Java (of course) allows reading and writing text files, using “streams” that can

be connected to standard input/output, files, etc.

• Can also read/write binary data:

– DataInputStream, DataOutputStream to write out primitive

types.

– ObjectInputStream, ObjectOutputStream to write out

other types — but only Serializable objects.

Slide 6

Object Serialization in Java

• In order to write a non-primitive object to a file, must somehow to turn it into a

sequence of bytes; to read, must reconstruct. This is “serialization”.

• How does it work?

– Object and all referenced objects (except static and transient

variables) are turned into sequential stream of bytes.

– Can override readObject, writeObject to control what happens

more precisely.

3



CSCI 3366 November 20, 2019

Slide 7

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level: HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level: TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level: IP (Internet Protocol — addressing, routing of packets).

– Link level: device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 – 1023 are “well-known

ports” (and may be off-limits to regular applications), others available for

applications.

Slide 8

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.

4



CSCI 3366 November 20, 2019

Slide 9

Networking in Java

• Classes for communicating at application level (e.g., URL).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

Slide 10

Distributed-Memory Programming in Java Using Sockets

• Based on client/server model.

• Server sets up “server socket” specifying port number, then waits to accept

connections. Connection generates socket.

• Client connects to server by giving name/IPA and port number — generates a

socket.

• On each side, get input/output streams for socket, which you can then

operate on exactly like you operate on streams connected to files. Program

must define protocol for the two sides to communicate. (Like MPI, no? Except

you can more easily transmit objects!)

5



CSCI 3366 November 20, 2019

Slide 11

Example: Generic Master/Worker Revisited

• Version using sockets is relatively straightforward — server creates a new

thread for each client, only tricky bits are in making sure things are shut down

properly. Note use of synchronized in code to ensure thread-safe

access to shared variables.

• (Look at code. Comments in Master.java describe protocol for

client/server interaction. Two variants of master process, one expecting fixed

number of workers, the other not.)

Slide 12

Minute Essay

• None really — just sign in, unless questions?

6


