
CSCI 3366 September 13, 2021

Slide 1

Administrivia

• (None?)

Slide 2

Basic OpenMP Constructs, Etc. — Overview

• #pragma omp parallel before a block launches a “team” of threads,

which continue until the end of the block. Code after the block executes only

after all threads have completed the block.

• #pragma omp master or #pragma omp single within a

parallel block says only one thread will do following block.

• #pragma omp for (within parallel block) says iterations of the following

for loop are split among threads. Sort of the workhorse construct for

OpenMP; many options.

• Several synchronization-related keywords.

• Several library functions.

1



CSCI 3366 September 13, 2021

Slide 3

Basic OpenMP Constructs — Parallel for

• By default, variables are shared, and semantics of initial, final values are a

little complicated.

• private can be used to give each thread its own copy of a variable.

• reduction can be used to give each thread its own copy of a variable and

have them combined (“reduced”) at end.

• schedule lets you choose how iterations are split among threads —

statically/evenly or at runtime.

Slide 4

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• How to “parallelize’?

2



CSCI 3366 September 13, 2021

Slide 5

Parallel Version of Numerical Integration — Strategy

• Basic strategy seems sort of obvious? most of the processing consists of

adding up items computed in a for loop, so “parallelize” that: Parcel out

iterations of loop among threads, have each thread compute a partial sum,

and then combine partial sums.

• But it seems like there might be some issues: How to split iterations among

threads? What about shared variables (here, x and sum)? Probably need to

do something, no?

Slide 6

Parallel Version of Numerical Integration — Code

• (See example code.)

3



CSCI 3366 September 13, 2021

Slide 7

More OpenMP — Synchronization Constructs

• critical — only one thread at a time executes this block of code.

(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of

parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about

them in the specification.

Slide 8

More OpenMP — Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.

4



CSCI 3366 September 13, 2021

Slide 9

Measuring Performance

• Absolute performance what most end users want, and they have large

problems that run for a while.

• For this course, however, I say it makes sense to focus on small problems so

we can do more tests / measurements — just not too small (say, under 10

seconds).

I also like to time just the computational part of the program.

• Note also that with remote login you have a choice as to where to run

programs, so when you get ready to measure performance, might want to log

onto one of the “server” machines. Dione is older and slower but has a lot of

PEs!

Slide 10

Homework 1 — Overview

• Assignment asks you to parallelize a sequential program fairly similar to

numerical integration example:

The sequential program estimates the value of π by simulating throwing

“darts” at a square board and counting how many fall within an inscribed

quarter-circle.

If the board is a square of size 1, its area is 1, and the area of the

quarter-circle is π/4. If the darts are thrown randomly, and there are enough

of them, dividing the number that fall inside the quarter-circls by the total

number should give an approximation to π/4.

• The assignment will eventually ask you to do this in each of the programming

environments we’ll use, as a way of getting started with them. We’ll do it

twice, once just to get started and to discover some possibly-subtle pitfalls,

and again to address those pitfalls.

5



CSCI 3366 September 13, 2021

Slide 11

Homework 1, Continued

• Details coming soon; I can e-mail you sequential code right away if you’re

eager to get started?

6


