
CSCI 3366 September 15, 2019

Slide 1

Administrivia

• Homework 1 posted. Two programs — one with OpenMP, one with MPI.

Tentative due date is a week from today. Or is that too aggressive?

Slide 2

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. First standard

MPI 1.1, followed by MPI 2.x and 3.x. 1.1 specification is 500+ pages, and

later standards even bigger.

• Original reference implementation — MPICH (Argonne National Lab).

LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /

most popular may be OpenMPI (installed on department machines).

(Yes — OpenMP, OpenMPI, very confusing! but aside from names,

unrelated.)

1



CSCI 3366 September 15, 2019

Slide 3

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the (first) standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 4

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.

• More . . .

2



CSCI 3366 September 15, 2019

Slide 5

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.

Slide 6

Compiling and Running MPI Programs — Setup

• OpenMPI starts processes on remote machines using SSH. In order for this

to work, your account has to be set up to not prompt for a password.

• You can find instructions for setting that up linked from my home page

http:/www.cs.trinity.edu/˜bmassing.

3



CSCI 3366 September 15, 2019

Slide 7

Compiling and Running MPI Programs — Setup
Continued

• Also be aware that OpenMPI commands and functions not part of default

search path. To use them you need either

module load openmpi-default

(for the Scientific Linux default version) or

module load openmpi-latest

(for a locally-compiled version using the latest GCC and enabling more

features).

• Note that once you load one of these modules, you should have access to

man pages for all MPI commands and functions.

Slide 8

Compiling MPI Programs

• Compile with mpicc. (I say use my make file.)

• (mpicc basically invokes gcc with some extra parameters to access the

MPI include files and libraries.)

4



CSCI 3366 September 15, 2019

Slide 9

Running MPI Programs

• Can just call executable, but that only launches one process.

• Instead, use mpirun. Many many options, so very flexible, but also can be

difficult to figure out how to get it do what you want.

• Very basic usage (to start two processes):

mpirun -np 2 ./hello

• But this starts all processes on the same machine . . .

Slide 10

Running MPI Programs, Continued

• Various ways to specify where to start processes:

– -host followed by comma-separated list of values

Note however that you may need to have one machine name per process.

– -hostfile followed by name of a file containing machine names.

Note however that by default this tends to bunch up processes on first few

machines listed. To spread them around more, add -map-by node.

(This is my preference, but might be worth trying both ways and comparing

performance!)

• Also, remotely-launched programs may have trouble finding MPI library code.

A way to resolve that is with -prefix.

• My script run-pgm may be useful.

5



CSCI 3366 September 15, 2019

Slide 11

Simple Example(s)

• Look at “hello world” proggram; compile and run.

Slide 12

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.

6



CSCI 3366 September 15, 2019

Slide 13

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions:

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)

Slide 14

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

7



CSCI 3366 September 15, 2019

Slide 15

Numerical Integration, Revisited

• Recall numerical integration example, sequential version.

• How to parallelize with MPI? Can we use sort of the same strategy we used

for OpenMP, or do we need something totally different?

Slide 16

Numerical Integration in MPI

• Same basic strategy we used for OpenMP — split up loop iterations among

UEs, have each compute local sum, combine at the end — will work here too.

But there are some differences:

• OpenMP has nice syntax for splitting loop iterations among threads;

programmer doesn’t need to do this explicitly. Not so with MPI.

• With no shared memory, no worries about shared variables. But combining

partial results is more work.

• Sample program num-int-par.c.

8



CSCI 3366 September 15, 2019

Slide 17

A Few (More) Words About Measuring Performance

• (I think I said a lot of this last time, but to recap.)

• For most if not all programs we write for this class, we’ll be interested in

finding out how they “scale” with varying numbers of UEs. Only interesting on

a platform where you can vary that a lot. Classroom machines probably not

ideal for this; Dione (old and slow but lots of cores) and the Pandora

cluster better. For specifics of all classroom/lab machines, see “Specifics” in

https://sites.google.com/trinity.edu/csci-department-computers/

• Probably smart to re-run experiments at least twice so you have some idea of

whether times are repeatable. To be really careful should probably run several

times (four? five?) and average.

9


