
CSCI 3366 October 6, 2021

Slide 1

Administrivia

• Homework 2 due next Wednesday. Okay? How are you doing with it? I’m

considering making a slight revision in how to measure accuracy as a function

of number of UEs.

• I’m intending to record another make-up lecture to partly compensate for

Monday. Earlier this week!

Slide 2

OpenCL — Review/Recap

• Explicitly defines computation in terms of some parts that execute on a “host

computer” and others that execute on a “compute device” (typically a GPU but

doesn’t have to be).

• Intended to be very portable but also to not hide too much from the

programmer.

• Result is that programmers must deal with a lot of low-level details. However,

many of those details the same from program to program and can be

encapsulated in a library. I wrote one for my own use; you can use it too.

1



CSCI 3366 October 6, 2021

Slide 3

OpenCL — Numerical Integration Review/Recap

• Look again at code.

• Questions?

Slide 4

A Few Words About Design Patterns

• Title of our book includes the word “patterns”.

• What do we mean? “Design patterns”.

2



CSCI 3366 October 6, 2021

Slide 5

A Few (More) Words About Design Patterns

• Idea originated with architect Christopher Alexander (first book 1977). Basic

idea: Look for problems that have to be solved over and over, and try to come

up with “expert” solution, then write it in a form accessible to others. Usually

this means adopting “pattern format” to use for all patterns. Characteristics of

a good pattern:

– Neat balancing of competing “forces” (tradeoffs).

– Name either tells you what it’s about, or is a good addition to vocabulary.

– “Aha!” aspect.

• First used in CS in OOD/OOP, about 1987. Really started to take off in OO

community with “Gang of Four” book (Gamma, Helms, Johnson, and

Vlissides; 1995). Now can find people writing patterns in many, many areas.

• Simple low-level example — iterator.

Slide 6

“A Pattern Language for Parallel Programming”?

• Goal of our book (and preceding work): Apply this idea in parallel computing.

• We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

• At some point we realized we also wanted to talk about how you get from the

original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about

commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

• After much thought and discussion . . .

3



CSCI 3366 October 6, 2021

Slide 7

“A Pattern Language for Parallel Programming”,

Continued

• Eventually: Four-layer “pattern language”. (Note that “pattern language”

connotes common vocabulary more than grammatical structure. Not a

programming language!)

• We figured it would be a starting point but might need to be revised and

extended. Indeed, that’s so, especially (IMO) to adapt to changing state of the

world.

• Much work has been done on that, primarily by Mattson and Sanders and a

group at UC Berkeley. Project seems to be somewhat stalled at this point, but

maybe someday?

Slide 8

Overall Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design.

– Finding Concurrency — how to decompose problems, analyze

decomposition.

– Algorithm Structure — high-level program structures.

– Supporting Structures — program structures, data structures.

– Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

• Idea is that you start at the top, work your way down, possibly with some

backtracking.

4



CSCI 3366 October 6, 2021

Slide 9

Finding Concurrency — Preview

• Decomposition patterns (Task Decomposition, Data Decomposition): Break

problem into tasks that maybe can execute concurrently.

• Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

• Design Evaluation: Review what you have so far, possibly backtrack.

Slide 10

Algorithm Structure — Preview

• Task Parallelism — decompose problem into lots of tasks, independent or

nearly so. Example: numerical integration.

• Divide and Conquer — decompose recursively as in divide-and-conquer

algorithms. Examples: quicksort, mergesort.

• Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Distinguised from Task Parallism by dependencies among

points/regions. Example: Mesh-based computation.

• Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.

• Pipeline — decompose based on assembly-line analogy.

• Event-Based Coordination — decompose problem into entities interacting

asynchronously.

5



CSCI 3366 October 6, 2021

Slide 11

Supporting Structures — Preview

• Program structure patterns:

– SPMD (Single Program, Multiple Data) — “like an MPI program”.

– Loop Parallelism — “like an OpenMP program”.

– Master/Worker — like the name suggests.

– Fork/Join — when none of the others fits.

• Data structure patterns:

– Shared Queue — example of applying Shared Data.

– Distributed Array.

Slide 12

Implementation Mechanisms — Preview

• Generic discussion of “building blocks” for parallel programming — analogous

to assignment, if/then/else, loops in procedural programming languages.

(Can think of this as “what basic questions do I ask about a new parallel

programming environment?”)

• Three basic categories:

– UE management.

– Synchronization.

– Communication.

6



CSCI 3366 October 6, 2021

Slide 13

Example Applications

• Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

• (Next time.)

7


