
CSCI 3366 October 8, 2021

Slide 1

Administrivia

• Reminder: Please do watch the short recording for 10/01, and then send me

an e-mail so you get that one attendance point.

Slide 2

Example Applications

• Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

• Meant to be representative as the kinds of problems our book was intended to

address.

1

CSCI 3366 October 8, 2021

Slide 3

Example — Molecular Dynamics

• Goal is to simulate what happens to large molecule. Of interest, e.g., in

modeling how a drug interacts with a protein.

• Approach is to treat molecule as a collection of balls (atoms) connected by

springs (chemical bonds). Then do “standard time-stepping”:

Divide time into discrete steps.

At each step use classical mechanics to figure out new positions for atoms

based on current positions and forces among them.

In more detail . . .

Slide 4

Molecular Dynamics — Computation

• At each time step:

– Compute forces (vibrational and rotational) on atoms caused by chemical

bonds between them. Short-range interaction, so not too much

computation here.

– Compute forces on atoms caused by their electrical charges. Potentially

must consider all pairs of atoms, so lots of computation here.

– Use forces to update atoms’ positions and velocities.

– Compute other physical properties of the system (e.g., energies).

• To reduce computational load, can limit computation of

electrical-charge-induced forces to atoms that are “close”. To do this,

calculate for each atom a list of “neighbors”. If time steps are short, atoms

don’t move much in each, so don’t have to do this every step.

2

CSCI 3366 October 8, 2021

Slide 5

Molecular Dynamics Pseudocode

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps

vibrational_forces (N, atoms, forces)

rotational_forces (N, atoms, forces)

neighbor_list (N, atoms, neighbors)

non_bonded_forces (N, atoms, neighbors, forces)

update_atom_positions_and_velocities

(N, atoms, velocities, forces)

physical_properties (... Lots of stuff ...)

end loop

Slide 6

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))

forceY = non_bond_force(atoms(2,i), atoms(2,j))

forceZ = non_bond_force(atoms(3,i), atoms(3,j))

force(1,i) += forceX; force(1,j) -= forceX;

force(2,i) += forceY; force(2,j) -= forceY;

force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]

end loop [i]

end function non_bonded_forces

3

CSCI 3366 October 8, 2021

Slide 7

Example — Heat Diffusion

• A simple example, representative of a big class of scientific-computing

applications: “Heat distribution problem”.

• Goal is to simulate what happens when two ends of a pipe are put in contact

with things at different (constant) temperatures — pipe conducts heat, its

temperature changes over time, eventually converging on a smooth gradient.

• Can model mathematically how temperature in pipe changes over time using

partial differential equations.

• Can approximate solution by “discretizing” — spatially and with regard to time.

Slide 8

Heat Diffusion Code

double *uk = malloc(sizeof(double) * NX);

double *ukp1 = malloc(sizeof(double) * NX);

double *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

double maxdiff, diff;

initialize(uk, ukp1);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k) {

/* compute new values */

for (int i = 1; i < NX-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* check for convergence */

maxdiff = 0.0;

for (int i = 1; i < NX-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if (diff > maxdiff) maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);

}

4

CSCI 3366 October 8, 2021

Slide 9

Minute Essay

• Questions?

5

