CSCI 3366 October 8, 2021

Administrivia

® Reminder: Please do watch the short recording for 10/01, and then send me

an e-mail so you get that one attendance point.

Slide 1
Example Applications
e Before starting on Finding Concurrency patterns — two example applications
to be used as running examples.
e Meant to be representative as the kinds of problems our book was intended to
address.
Slide 2

CSCI 3366 October 8, 2021

Example — Molecular Dynamics

e Goal is to simulate what happens to large molecule. Of interest, e.g., in
modeling how a drug interacts with a protein.

e Approach is to treat molecule as a collection of balls (atoms) connected by
springs (chemical bonds). Then do “standard time-stepping”:
Slide 3 Divide time into discrete steps.

At each step use classical mechanics to figure out new positions for atoms
based on current positions and forces among them.

In more detail ...

Molecular Dynamics — Computation

o At each time step:

— Compute forces (vibrational and rotational) on atoms caused by chemical
bonds between them. Short-range interaction, so not too much
computation here.

Slide 4 — Compute forces on atoms caused by their electrical charges. Potentially
must consider all pairs of atoms, so lots of computation here.
— Use forces to update atoms’ positions and velocities.

— Compute other physical properties of the system (e.g., energies).

e To reduce computational load, can limit computation of
electrical-charge-induced forces to atoms that are “close”. To do this,
calculate for each atom a list of “neighbors”. If time steps are short, atoms
don’t move much in each, so don’t have to do this every step.

CSCI 3366 October 8, 2021

4)

Molecular Dynamics Pseudocode

Int const N // number of atoms
Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Slide 5
loop over time steps
vibrational_forces (N, atoms, forces)
rotational_forces (N, atoms, forces)
neighbor_list (N, atoms, neighbors)
non_bonded_forces (N, atoms, neighbors, forces)
update_atom_positions_and_velocities
(N, atoms, velocities, forces)
physical_properties (... Lots of stuff ...)
end loop

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZz

loop [i] over atoms
loop [j] over neighbors (i)

forceX = non_bond_force (atoms (1,1), atoms(1,3))

Slide 6 forceY = non_bond_force (atoms (2, 1), atoms(2,3))

forceZ = non_bond_force (atoms(3,1), atoms(3,3))

force(l,1i) += forceX; force(1,j) -= forceX;
force(2,1) += forceY; force(2,3) -= forcey;
force(3,1i) += forcez; force(3,j) -= forcez;

end loop [j]
end loop [i]
end function non_bonded_forces

CSCI 3366

October 8, 2021

Slide 7

Example — Heat Diffusion

e A simple example, representative of a big class of scientific-computing

applications: “Heat distribution problem”.

e Goal is to simulate what happens when two ends of a pipe are put in contact
with things at different (constant) temperatures — pipe conducts heat, its
temperature changes over time, eventually converging on a smooth gradient.

o Can model mathematically how temperature in pipe changes over time using

partial differential equations.

e Can approximate solution by “discretizing” — spatially and with regard to time.

Slide 8

Heat Diffusion Code

double *uk = malloc(sizeof (double) * NX);
double *ukpl = malloc (sizeof (double) * NX);
double *temp;

double dx = 1.0/NX; double dt = 0.5+dx*dx;
double maxdiff, diff;

initialize (uk, ukpl);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k)

/% compute new values */
for (int i = 1; i < NX-1; ++1i) {

ukpl[i]=uk[i]+ (dt/ (dx*dx))« (uk([i+1]-2+uk[i]+uk[i-1]);
b

/* check for convergence */
maxdiff = 0.0;
for (int i = 1; i < NX-1; ++i) {
diff = fabs(uk[i] - ukpl[i]);
if (diff > maxdiff) maxdiff = diff;
b

/* "copy" ukpl to uk by swapping pointers /
temp = ukpl; ukpl = uk; uk = temp;

printValues (uk, k);

CSCI 3366 October 8, 2021

e Questions?

Slide 9

