CS4320 (Principles of Operating Systems): Homework 2

Assigned: October 24, 2000. **Due:** October 31, 2000, by 5pm. **Credit:** 30 points.

Reading

Be sure you have read chapters 8 and 9. (You can skim sections 8.7, 9.5, 9.6, 9.7, and 9.9.)

Problems

Turn in hardcopy answers (either handwritten or generated by your favorite word-processing or text-formatting program) to the following problems.

1. (3 points) Consider a simple contiguous-allocation scheme for assigning memory to processes, as described in class and in section 8.4.2 of Silberschatz and Galvin. Suppose that as a result of previous activity memory contains the following. (To keep the notation simple, memory amounts will be in bytes and ridiculously small.)

Locations	Contents
0 - 1999	Operating system
2000 - 2999	Free
3000 - 4999	Process A
5000 - 5499	Free
5500 - 6499	Process B
6500 - 9499	Free
9500 - 9999	Process C

Now suppose we want to start a process requiring 400 bytes of memory. At what location will main memory be allocated for this process if we use

- a first-fit strategy for allocating memory?
- a best-fit strategy?
- a worst-fit strategy?
- 2. (4 points) Exercise 8.8 from Silberschatz and Galvin. (Interpret "word" to mean the smallest addressable unit of memory.)
- 3. (4 points) Exercise 8.9 from Silberschatz and Galvin.
- 4. (4 points) Exercise 8.11 from Silberschatz and Galvin.
- 5. (3 points) Suppose you have a system in which pages are of size 64K (65536) bytes and addresses (both logical and physical) are 18 bits, and suppose you have the following page table for a particular process.

Page number	Page frame number
0_{16}	2_{16}
1_{16}	3_{16}
2_{16}	1 ₁₆
3_{16}	invalid

What are the physical addresses (in base 16) for each of the following logical ("program") addresses?

- 00000₁₆
- 2A000₁₆
- 30200₁₆
- 6. (4 points) Suppose you are designing a multiuser system that is to provide each process with a virtual address space of 2³¹ bytes, and you would like to make it possible to have at least 16 users at a time. How much main memory do you need? (Or is this not a fixed number, and if not, why not?) How much secondary memory do you need? (Or is this not a fixed number, and if not, why not?)
- 7. (4 points) For each of the following programming techniques and data structures, explain whether you think its use would or would not contribute to good program performance in a demand-paged environment and why.
 - Array.
 - Hash table.
 - Sequential search.
 - Binary search.
 - Self-modifying code.
 - Linked list.
- 8. (4 points) Exercise 9.9 from Silberschatz and Galvin.