
CSCI 4320 (Principles of Operating Systems), Fall 2003

Homework 2

Assigned: October 3, 2003.

Due: October 9, 2003, at 5pm. Not accepted past class time October 14.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

1 Reading

Be sure you have read chapter 1 and chapter 2 up through section 2.4.

2 Problems

Do the following problems. You may write out your answers by hand or using a word processor or
other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Most Unix systems include some command that allows you to trace all system
calls made by a process or command. Under Linux, this command is strace. For example,
to trace all the system calls made during execution of the command ls -l and record the
output in OUT, you would type

strace -o OUT ls -l

Your mission for this problem is to run strace for a command of your choice, capture the
output, and then describe what some of it means. Specifically, I want you to pick at least
four lines of the output using different system calls and briefly explain each of these lines,
describing in general terms what the system call is supposed to do and what the parameters
and return value mean. (So, you will turn in a printout of the output of strace with your
homework. You can mark it up with numbers and then refer to these numbers in your
explanation.)

The man page for strace explains the general format of the output. To find out what the
individual system calls do, you will need to read their man pages. Some of these are easy
to find — e.g., the first call is usually to execve, and man execve will tell you about it.
Some are a little harder to track down — e.g., man open produces information about an open

command rather than a system call. man -k open produces a list of all man pages whose
one-line descriptions include “open”, and from this list one can perhaps guess that to look
at the desired man page you need the command man 2 open. If the system call reported by
strace ends in 64 (e.g., fstat64), the right man page can be found by removing “64” from
the name (e.g., man fstat).

1



CSCI 4320 Homework 2 Fall 2003

2. (5 points) Does a timesharing system need a process table? Why or why not? What about
a personal-computer system in which only one process at a time can execute, that process
taking over the whole machine until it is finished? Why or why not?

3. (5 points) Consider a computer that does not have a test-and-set-lock (TSL) instruction,
but does have an instruction to swap the contents of a register and a memory word in a single
indivisible action. Use such an instruction (call it SWAP) to write a routine enter region like
the one found in Figure 2-22 in the textbook, or explain why this is impossible.

4. (5 points) Consider the procedure put forks in Figure 2-33 in the textbook. Suppose that
the variable state[i] was set to THINKING after the two calls to test rather than before.
How would this change affect the solution? (I.e., would it work as well as before? better?
not as well?)

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Turn in your code by sending mail to cs4320@cs.trinity.edu, with each of your code files as an
attachment. If there’s any question of which file(s) correspond to which problems, explain in the
body of the mail message. Please use a subject line such as “homework 2” or “hw2”. You can
develop your programs on any system that provides the needed functionality, but I will test them
on one of the department’s RedHat 9 Linux machines, so you should probably make sure they work
in that environment before turning them in.

1. (10 points) Figure 1-19 in chapter 1 of the textbook presents pseudocode for a simple
command shell. Your mission for this problem is to turn this into a C or C++ program
that runs on a Linux system. Your program should prompt the user for a command and
command-line arguments (the prompt can be something simple, such as “?”) and then run
the given command with the given arguments. You can require that the user give the full
path for the command, and you do not have to do sophisticated parsing of the command-line
arguments (such as wildcard expansion, recognition of environment variables, etc., etc.). Here
is a sample execution, terminated by control-C.

[bmassing@Athena]$ ./simple-shell

? ls

Unable to find command

? /bin/ls

Makefile another simple-shell simple-shell.cpp somefile

? /bin/ls -l

total 28

-rw------- 1 bmassing bmassing 119 Oct 3 08:02 Makefile

-rw------- 1 bmassing bmassing 5 Oct 3 08:00 another

-rwx------ 1 bmassing bmassing 22035 Oct 3 08:15 simple-shell

-rw------- 1 bmassing bmassing 1407 Oct 3 08:15 simple-shell.cpp

-rw------- 1 bmassing bmassing 5 Oct 3 08:00 somefile

? /bin/ls junk

/bin/ls: junk: No such file or directory

?

[bmassing@Athena]$

2



CSCI 4320 Homework 2 Fall 2003

You can add more functionality (searching a path for the command, doing more sophisticated
parsing of inputs, exiting when the user types “exit”, etc.). If you do, describe the added
functionality in comments at the top of your code. I will give up to 5 extra points for
significant extra features.

Turning the pseudocode into code mostly involves defining appropriate data structures for the
variables in the pseudocode and replacing the type prompt and read command functions with
appropriate real code. Your first step should probably be to read the man page for execve

to see what arguments it expects, and then figure out what you need to do to turn what the
user types in into suitable input to execve.

You will probably find that most of the code you write for this problem will be code to parse
the input (accept a line of text and break it into a command and arguments). You can do this
using C functions such as scanf, with the C++ string class, or whatever you prefer. If you
use the C functions and fixed-size character arrays, try to make the program fail gracefully if
the user supplies more input than your code has room to accept.

2. (10 points) The starting point for this problem is a simple C++/threads implementation
threads-cr.cpp1 of the mutual-exclusion problem. Currently no attempt is made to ensure
that only one thread at a time is in its critical region, and if you run it you will see that in
fact it frequently happens that all the threads are in their critical region at the same time.
Your mission is to correct this. You have two options:

• Use the “mutex” library functions, which provide simple locking/unlocking. man pthread mutex init

will tell you about these functions.

• Write your own implementation of semaphores using the mutex library functions for
locking, and then use this implementation to fix the mutual-exclusion program using
(your) semaphores. This option is worth up to 5 extra points.

Start by compiling the program and observing its behavior with different numbers of threads.
To compile with g++, you will need the extra flag -pthread, e.g.

g++ -o threads-cr -pthread threads-cr.cpp

(On the RedHat 9 machines, this command produces a lengthy warning about one of the
#included files. This message appears to be harmless. An updated version of the program
that doesn’t produce the message can be found in new-threads-cr.cpp2. It produces other
warnings on older systems.) Interestingly enough, the exact behavior of this program seems
to depend both on the number of processors and on the release of the operating systems —
try it on one of the lab machines and then on one of the Dwarf machines to see what I mean.
You may need to recompile when switching to a machine running a different release of the
operating system.

Then make your changes and confirm that the program now behaves as expected, i.e., when
one thread starts its critical region no other thread can start its critical region until the first
one finishes.

1http://www.cs.trinity.edu/~bmassing/CS4320_2003fall/Homeworks/HW02/Problems/threads-cr.cpp
2http://www.cs.trinity.edu/~bmassing/CS4320_2003fall/Homeworks/HW02/Problems/new-threads-cr.cpp

3


