
CSCI 4320 September 2, 2003

Slide 1

Administrivia

• Class mailing list — everyone got test message?

• “Lecture topics and assignments” page — be sure to check for reading

assignments.

Slide 2

Evolution of Operating Systems, Recap

• Increasing hardware capability.

• Increasing o/s functionality and complexity — from simple program loader to

complex multitasking system.

• Parallels between evolution of mainframe o/s and PC o/s.

CSCI 4320 September 2, 2003

Slide 3

Operating System Functionality

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of

“things happening at the same time” (in effect if not in fact), including:

∗ In batch systems, user “jobs”, plus input/output spooling.

∗ In timesharing system, interactive users.

∗ In PC o/s, concurrently-executing tasks.

Here too, idea of ownership / access rights.

• Manage resources:

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.

Slide 4

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.



CSCI 4320 September 2, 2003

Slide 5

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical

operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute.

• Registers — “local memory” for processor; general-purpose registers for

arithmetic and other operations, special registers (program counter, stack

pointer, program status word (PSW)).

• Now consider what additional features would make it easier to write an

operating system . . .

Slide 6

Interrupt Mechanism

• Need convenient way to interrupt current processing when an unexpected or

don’t-know-when event happens — error occurs (e.g., invalid operation), I/O

operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

• Usually have a TRAP instruction for generating interrupt.

CSCI 4320 September 2, 2003

Slide 7

Dual-Mode Operation, Privileged Instructions

• Need mechanism to keep application programs from doing things that should

be reserved for o/s.

• Usual approach — in hardware, define two modes for processor (supervisor

and user), privileged instructions.

– Privileged instructions — things only o/s should do, e.g., enable/disable

interrupts.

– Bit in PSW indicates supervisor mode (o/s only, privileged instructions

okay) or user mode (application programs, privileged instructions not

allowed).

– When to switch modes? when o/s starts application program, when

application program requests o/s services, on error.

Slide 8

Memory Protection

• Very useful to have a way to give each process (including o/s) its own

variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to

access memory out of ranges generates exception/interrupt; several ways,

including:

– Limit each process to a range of memory locations; hold starting and

ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each

process a key, and only allow processes to access blocks if keys match.



CSCI 4320 September 2, 2003

Slide 9

Timer

• Useful to have a way to set a timer / “alarm clock” — e.g., to get control back if

application program enters infinite loop.

• Usual approach — hardware features that tracks real time and can be set to

interrupt CPU.

Slide 10

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:

registers, cache, RAM, magnetic disk, magnetic tape.

• Note also — some types volatile, some non-volatile.

CSCI 4320 September 2, 2003

Slide 11

Program Relocation

• At the machine-instruction level, references to memory are in terms of an

absolute number. Compilers/assemblers can generate these only by making

assumption about where program will reside in memory.

• In the very early days, programs started at 0, so no problem. Now they hardly

ever do, so we need a way to relocate programs — when loaded, or “on the

fly”.

“On the fly” relocation uses MMU (memory management unit) — which can

provide both program relocation and also memory protection.

Slide 12

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,

etc.).

• How to make this work:

– Layers of s/w abstraction (as with other parts of o/s).

– Layers of h/w abstraction too: most devices attached via controller, which

provides a h/w layer of abstraction (e.g., “IDE controller”).



CSCI 4320 September 2, 2003

Slide 13

I/O

• CPU communicates with device controller by reading/writing device registers;

device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call.

• Recap: application program↔ system call (to o/s)↔ device driver↔ device

controller↔ device

Slide 14

Minute Essay

• I once had a learning experience about “how DOS is different from a real o/s”.

Summary version: A program using pointers (possibly uninitialized) caused

the whole machine to lock up and need to be power-cycled.

What do you think went wrong?


