
CSCI 4320 September 16, 2003

Slide 1

Administrivia

• Remember that Homework 1 is due by 5pm today.

Slide 2

Minute Essay From Last Lecture

• Question: In a system with 8 CPUs and 100 processes, what’s the maximum

number of processes that can be running? ready? blocked?

• Answer:

– 8 processes can be running (assuming there are 8 that are runnable).

– 92 processes can be ready (if there are more, some will be running).

– 100 processes can be blocked.

CSCI 4320 September 16, 2003

Slide 3

Recap — Processes

• Process abstraction — “program running on virtual CPU” (virtual program

counter, virtual registers, etc.).

• Apparent concurrency (in almost all respects identical to real concurrency)

provided by interleaving / context switches.

• Context switch — switch between virtual CPUs, triggered by interrupts (I/O,

error, system call, timer).

• Process can also be a way of grouping together other resources needed by a

running program, e.g., “address space”, list of open files.

These resources may form part of the “context” that must be saved / restored

on a context switch.

Slide 4

Recap — Process States

• Three basic states for processes – running, ready, blocked.

• Some transitions are obvious, others require decision-making (ready to

running); for now, assume existence of “scheduler” to make decisions.



CSCI 4320 September 16, 2003

Slide 5

Recap — Threads

• Processes versus threads:

– Process implements “program on virtual CPU” abstraction, has its own

group of resources.

– Thread implements “program on virtual CPU” abstraction, shares group of

resources with (some) other threads.

• Threads are in a way “processes within processes”.

• Compare context switching between processes with context switching

between threads within process.

• Two basic approaches to implementing threads — “in user space” and “in

kernel space”.

Slide 6

Interprocess Communication

• Processes almost always need to interact with other processes:

– “Ordering constraints” – e.g., process B uses as input some data produced

by process A.

– Use of shared resources — files, shared memory locations, etc.

• Use of shared resources can lead to “race conditions” — output depends on

details of interleaving.

• Processes must communicate to avoid race conditions and otherwise

synchronize.

CSCI 4320 September 16, 2003

Slide 7

Mutual Exclusion Problem

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

Slide 8

Mutual Exclusion Problem, Continued

• We’ll look at various solutions (some correct, some not):

– Using only hardware features always present (some notion of shared

variable).

– Using optional hardware features.

– Using “synchronization primitives” (abstractions that help solve this and

other problems).

• Recall that a correct solution

– Must work for more than 1 CPU.

– Must work even in the face of unpredictable context switches — whatever

we’re doing, another process can pull the rug out from under us between

“atomic operations” (machine instructions).



CSCI 4320 September 16, 2003

Slide 9

Atomic Operations

• Which of the following are “atomic”?

– x = 1;

– x = x + 1;

– ++x;

– if (x = 0) x = 1;

Slide 10

Proposed Solution — Disable Interrupts

• Pseudocode for each process:

while (true) {

disable_interrupts();

do_cr();

enable_interrupts();

do_non_cr();

}

• Does it work? reviewing the criteria . . .

CSCI 4320 September 16, 2003

Slide 11

Proposed Solution — Simple Lock Variable

• Shared variables:

int lock = 0;

Pseudocode for each process:

while (true) {

while (lock != 0);

lock = 1;

do_cr();

lock = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . . No.

Slide 12

Proposed Solution — Strict Alternation

• Shared variables:

int turn = 0;

Pseudocode for process p0:

while (true) {

while (turn != 0);

do_cr();

turn = 1;

do_non_cr();

}

Pseudocode for process p1:

while (true) {

while (turn != 1);

do_cr();

turn = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . . No.



CSCI 4320 September 16, 2003

Slide 13

Proposed Solution — Peterson’s Algorithm

• Shared variables:

int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:

while (true) {

interested0 = true;

turn = 0;

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:

while (true) {

interested1 = true;

turn = 1;

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Does it work? reviewing the criteria . . . Yes.

Slide 14

Proposed Solution — TSL Instruction

• A key problem in concurrent algorithms is the idea of “atomicity” (operations

guaranteed to execute without interference from another CPU/process).

Hardware can provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

CSCI 4320 September 16, 2003

Slide 15

Proposed Solution — TSL Instruction, Continued

• Shared variables:

int lock = 0;

Pseudocode for each process:

while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:

enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? reviewing the criteria . . . Yes.

Slide 16

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . .



CSCI 4320 September 16, 2003

Slide 17

Minute Essay

• Do you see why the various solutions to the mutual exclusion problem so far

work / don’t work?

• Give an example (other than those discussed) of a situation in which you think

a solution to this problem would be needed.


