CSCT 4320

September 23, 2003

-

Administrivia

o (I guess there’s not any!)

Slide 1

Minute Essay From Last Lecture

o Alleged joke (from some random Usenet person):
A man’s P should exceed his V else what's a sema for?
Do you understand this?

(P is down, V is up — if not more P’s than Vs, no point in having a
Slide 2 semaphore?)

Anything else unclear?

CSCT 4320

Slide 3

Slide 4

September 23, 2003

Semaphores — Recap

o Idea — define ADT that will be easier to use for interprocess
communication/synchronization, maybe we can implement without (as much)
busy-waiting.

o Definition as ADT:

— “Value” — non-negative integer.
— Two operations, both atomic:
* up (V) — add one to value.
* down (P) — block until value is nonzero, then subtract one.
o How does this relate to operating systems?

— Process abstraction (and its use within the o/s) means we have to solve
“synchronization problems”.

— Solution should somehow be part of o/s.

-

Implementing Semaphores

® We want to define:
— Data structure to represent a semaphore.
— Functions up and down.

e up and down should work the way we said, and we'd like to do as little
busy-waiting as possible.

CSCI 4320 September 23, 2003 CSCI 4320 September 23, 2003

() ()

Implementing Semaphores, Continued

Monitors
. » e History — Hoare (1975) and Brinch Hansen (1975).
o Idea — represent semaphore as integer plus queue of waiting processes
(represented as, e.g., process IDs). e |dea — combine synchronization and object-oriented paradigm.

® Then how should this work ... ® A monitor consists of

— Data for a shared object (and initial values).

Slide 5 Slide 7 — Procedures — only one at a time can run (e.g., whole procedure is a
critical region).
e “Condition variable” ADT allows us to wait for specified conditions (e.qg., buffer
not empty):
— Value — queue of suspended processes.
— Operations:
* Wait — suspend execution (and release mutual exclusion).
* Signal — if there are processes suspended, allow one to continue. (if
k) k not, signal is “lost”).)
Implementing Semaphores, Continued Bounded Buffer Problem, Revisited
e Variables — integer val ue, queue of process IDs queue. e Define a bounded_buf f er monitor with a queue and i nsert and
down() { w0 (I enove procedures.
bool zero; process p = null;
enter_cr(): enter_cr(); o Shared variables:
zero = (value == 0); if (empty(queue))
f) lue += 1;
e wse bounded_buffer B(N);
. el se p = dequeue(queue); .
Slide 6 ‘ enqu(e;:e(cuvrenliprucess‘ queue); ‘faf’”“m Slide 8 Pseudocode for producers: Pseudocode for consumers:
eave_cr(); i p !'= nul
if (zero) unbl ock(p) /1 mark p runnabl e whil e (t rue) { whil e (t r ue) {
bl ock(); /1 mark current process bl opked X X
) item = generate(); B.renove(item;
e enter cr(),l eave_cr () mostly like before; see p. 113. B.insert(item; use(item;
} }

CSCI 4320 September 23, 2003 CSCI 4320

September 23, 2003

() (

Bounded-Buffer Monitor Message Passing
e Data: e Previous synchronization mechanisms all involve shared variables, okay in
buffer B(N); // Nis a constant, buffer initially fpnpty some circumstances but not very feasible in others (e.g., multiple-processor
int count = 0; system without shared memory).
cond! ! I on full; o |dea of message passing — each process has a unique ID; two basic
condi tion enpty; o
Slide 9 & Slide 11 operations:
insert(itemit renove(item&it
.(m A (m { — Send — specify destination ID, data to send (message).
while (count == while (count == 0)
wait(full); wai t (enpty); — Receive — specify source ID, buffer to hold received data. Usually some

put(itm B); itm= get(B); way to let source ID be “any”.
count += 1; signal (full);
signal (enpty); }

}

Implementing Monitors Message Passing, Continued
e Requires compiler support, so more difficult to implement than (e.g.) e Exact specifications can vary, but typical assumptions include:
semaphores. — Sending a message never blocks a process (more difficult to implement
e Java’s methods for thread synchronization are based on monitors: but easier to work with).
— Data for monitor is instance variables (data for class). — Receiving a message blocks a process until there is a message to receive.
Slide 10

— Procedures for monitor are Synchr oni zed methods — mutual Slide 12

— All messages sent are eventually available to receive (can be non-trivial to
exclusion provided by implicit object lock.

implement).

—wait,noti fyy noti f yAI | methods. — Messages from process A to process B arrive in the order in which they

-) ; h were sent.
— No condition variables, but above methods provide more or less equivalent
functionality.

CSCT 4320

Slide 13

Slide 14

September 23, 2003

()

Implementing Message Passing

® On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.
o On a machine with physically shared memory, can either copy (from address
space to address space) or somehow be clever.

(Why would you want to do this? programming model is in some ways
simpler, doesn't require memory shared among processes.)

Mutual Exclusion, Revisited

o How to solve mutual exclusion problem with message passing?

e Several approaches based on idea of a single “token”; process must “have
the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

® One such approach — a “master process” that all other processes
communicate with; simple but can be a bottleneck.

e Another such approach — ring of “server processes”, one for each “client
process”, token circulates.

CSCT 4320

Slide 15

Slide 16

September 23, 2003

-

Mutual Exclusion With Message-Passing (1)

e |dea — have “master process” (centralized control).

while (true) { bool have_token = true;
send(master, "request”); queue vaitQ
receive(master, &sg); // assume “token” while (true) {

do_cr(); recei ve(ANY, &nsg);
send(master, "token"); if (neg = equest”) {
do_non_cr () ;

it (have_token) {
send(msg. sender, "token");
have_token = fal se;

i

el se
enqueue(sender, vaitQ;

else { // assume "token'
it (empty(waitQ)
have_token = true;
else
p = dequeue(waitQ;
send(p, "token");

Pseudocode for client process: Pseudocode for master process:

~

-

Mutual Exclusion With Message-Passing (2)

o Idea — ring of servers, one for each client.

Pseudocode for client process: Pseudocode for server process:
while (true) { bool need_token = fal se;
send(ny_server, "request”); if (ny_id == first)
recei ve(ny_server, &nmg); // assume "token" send(next_server, "token");
do_cr(): while (true) {
send(ny_server, "token"): recei ve(ANY, &nsg);

do_non_cr () ; it (msg == "request")
need_token = true;
else { // assume "token"
it (nsg.sender == ny_client) {
need_token = fal se;
send(next_server, "token");

}
else if (need_token)
send(ny_client, "token");
el se
send(next_server, "token");

}

CSCI 4320 September 23, 2003

()

o Which of the synchronization mechanisms we've talked about (semaphores,
monitors, message passing) do you think you would prefer to use? Why?

Slide 17

