
CSCI 4320 September 25, 2003

Slide 1

Administrivia

• A homework on processes/synchronization is coming soon.

• A few words about the computers in front of you:

– Checking your e-mail when you first get here is okay.

– Taking notes online is okay.

– Surfing the Web or playing games during lecture is not okay.

– Remember that I can lock all screens . . .

Slide 2

Minute Essay From Last Lecture

• Which of the synchronization mechanisms we’ve talked about (semaphores,

monitors, message passing) do you think you would prefer to use? Why?

About equal numbers for semaphores and message passing, fewer for

monitors. Seemed to depend in part on what people had experience with.

CSCI 4320 September 25, 2003

Slide 3

Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction.

• Higher-level mechanisms — semaphores, monitors, message passing. Often

built using something lower-level.

Slide 4

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.



CSCI 4320 September 25, 2003

Slide 5

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

Slide 6

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work?

CSCI 4320 September 25, 2003

Slide 7

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work?

Slide 8

Dining Philosophers — Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .



CSCI 4320 September 25, 2003

Slide 9

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

state[right(i) != eating) &&

state[i] == hungry) {

state[i] = eating;

up(self[i]);

}

}

Slide 10

Dining Philosophers — Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?

CSCI 4320 September 25, 2003

Slide 11

Other Classical Problems

• Readers/writers.

• Sleeping barber.

• And others . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .

Slide 12

Minute Essay

• Anything about processes or synchronization you want to hear more about?

particularly unclear?


