
CSCI 4320 October 23, 2003

Slide 1

Administrivia

• Next homework (on memory management) coming soon . . .

Slide 2

Minute Essay From Last Lecture

• How did the midterm compare to your expectations? easier or more difficult?

shorter or longer? topics?

Most people seemed to find it consistent with what they expected, maybe a

little longer or more difficult.

CSCI 4320 October 23, 2003

Slide 3

Memory References — Hardware vs. Software

• Hardware (MMU) steps:

– Does cache contain data for (virtual) address? if so, done.

– Does TLB contain matching page table entry? if so, generate physical

address and send to memory bus.

– Does page table entry (in memory) say page is present? if so, put PTE in

TLB and as above.

– If page table entry says page not present, generate page fault interrupt.

Slide 4

Memory References — Hardware vs. Software

• Page-fault interrupt handler steps:

– Is page on disk or invalid (based on entry in process table, or other o/s

data structure)? if invalid, terminate process.

– Is there a free page frame? If not, choose one to steal. If modified, write

current contents to disk (do other work while waiting), then modify PTE for

page.

– Read page contents in from disk (do other work while waiting), or zero out

new page, then modify PTE.

– Go back to original process to retry instruction that started this.



CSCI 4320 October 23, 2003

Slide 5

Memory References — Hardware vs. Software

• Some things defined by hardware architecture — structure of page table

entries, how MMU finds page table.

• A very common feature — each entry has R (“referenced”) and M (“modified”)

bits.

Set by MMU on every memory reference.

Cleared by operating system “when appropriate” — M bit when page is

replaced or written to disk, R bit when? Often want to do this periodically. A

good choice is “on clock interrupts” (generated at intervals by hardware, gives

o/s regular opportunities to do many things — more in chapter 5).

Slide 6

Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults.

• Choice usually constrained by what MMU provides (though that is influenced

by what would help o/s designers).

CSCI 4320 October 23, 2003

Slide 7

“Optimal” Algorithm

• Idea — if we know for each page when it will next be referenced, choose the

one for which that’s the furthest away.

• Theoretically optimal, though can’t be implemented.

• Useful as a standard of comparison — run program once on simulator to

collect data on page references, again to determine performance with this

“algorithm”. (Not clear that this is really possible with multiprogramming.)

Slide 8

“Not Recently Used” Algorithm

• Idea — choose a page that hasn’t been referenced/modified recently, hoping

it won’t be referenced again soon.

• Implementation — use page table’s R and M bits, group pages into four

classes:

– R=0, M=0.

– R=0, M=1.

– R=1, M=0.

– R=1, M=1.

Choose page to replace at random from first non-empty class.

• How good is this? Easy to understand, reasonably efficient to implement,

often gives adequate performance.



CSCI 4320 October 23, 2003

Slide 9

“First In, First Out” Algorithm

• Idea — remove page that’s been there the longest.

• Implementation — keep a FIFO queue of pages in memory.

• How good is this? Easy to understand and implement, no MMU support

needed, but could be very non-optimal.

Slide 10

“Second Chance” Algorithm

• Idea — modify FIFO algorithm so it only removes the oldest page if it looks

inactive.

• Implementation — use page table’s R and M bits, also keep FIFO queue.

Choose page from head of FIFO queue, but if its R bit is set, just clear R bit

and put page back on queue.

• Variant — “clock” algorithm (same idea, keeps pages in a circular queue).

• How good is this? Easy to understand and implement, probably better than

FIFO.

CSCI 4320 October 23, 2003

Slide 11

“Least Recently Used” (LRU) Algorithm

• Idea — replace least-recently-used page, on the theory that pages heavily

used in the recent past will be heavily used in the near future. (Usually true).

• Implementation:

– Full implementation requires keeping list of pages ordered by time of

reference. Must update this list on every memory reference.

– Only practical with special hardware — e.g.:

Build 64-bit counter C, incremented after each instruction.

On every memory reference, store C’s value in PTE.

To find LRU page, scan page table for smallest stored value of C.

• How good is this? Could be pretty good, but requires hardware we probably

won’t have.

Slide 12

“Not Frequently Used” (NFU) Algorithm

• Idea — simulate LRU in software.

• Implementation:

– Define a counter for each PTE. On every clock interrupt, update counter

for every PTE with R bit set.

– Choose page with smallest counter.

• How good is this? Reasonable to implement, could be good, but counters

track full history, which might not be a good predictor.



CSCI 4320 October 23, 2003

Slide 13

“Aging” Algorithm

• Idea — simulate LRU in software (like NFU), but give more weight to recent

history.

• Implementation similar to NFU, but increment counters by shifting right and

adding to leftmost bit — in effect, divide previous count by 2 and add bit for

recent references.

• How good is this? Pretty good approximation to LRU, though a little crude,

and limited by size of counter.

Slide 14

Intermezzo — Demand Paging, Prepaging, and Working
Sets

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

• Most programs exhibit “locality of reference”, so a process usually isn’t using

all its pages.

• A process’s “working set” is the pages it’s using. Changes over time, with size

a function of time and also of how far back we look.

CSCI 4320 October 23, 2003

Slide 15

“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by

looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning

parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and

for each entry:

If R bit is set, update time of last reference.

Compute time elapsed since last use. If more than τ , page can be

replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of

last use. If a tie, pick at random.

• How good is this? Good, but could be slow.

Slide 16

“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on

circular list of pages-in-memory for process.

• Implementation — like previous algorithm, but when we need to pick a page

to replace, go around the circle and:

– If R=1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M=1, schedule I/O to write this

page out (so it can maybe be replaced next time — M bit will be cleared

when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M=0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.

(If we get all the way around the circle, we’ll pick some page with M=0.)

• How good is this? Makes good choices, practical to implement, apparently

widely used in practice.



CSCI 4320 October 23, 2003

Slide 17

Review — Page Replacement Algorithms

• Nice summary in textbook, table on p. 228.

• Author says best choices are aging, WSClock.

Slide 18

Minute Essay

• I plan one more lecture on memory management. Anything you’d particularly

like to hear more about?


