
CSCI 4320 November 4, 2003

Slide 1

Administrivia

• Reminder: Please keep the lab doors closed after hours. There have been

reports of thefts.

• Homework 4 is on the Web. Due next Tuesday. Optional programming

problems may be added soon.

Slide 2

Administrivia

• Dr. Lewis’s course next term (CSCI 3294, “Effective OO Programming”):

“You’ve learned how to do object-oriented programming in C++/Java, but do

you do it well? Do you want to be better? This course will explore how to

effectively write code in C++ and Java and how to use design patterns to

improve the structure of your OO programs in general. The course will involve

reading and a significant amount of coding where you try to apply the things

that you have learned. Students in the course will be working with other

students to produce a large project.”

• My course next term (CSCI 3190, “Unix Power Tools”) — description linked

from my home page.

CSCI 4320 November 4, 2003

Slide 3

Minute Essay From Last Lecture

• Once upon a time, in a mainframe shop . . . (details as presented in class).

What was wrong? What should the systems people do?

The system is thrashing! so they should reduce the number of processes

(short term), install more memory (long term), etc.

Slide 4

I/O Management

• Operating system as resource manager — share I/O devices among

processes/users.

• Operating system as virtual machine — hide details of interaction with

devices, present a nicer interface to application programs.



CSCI 4320 November 4, 2003

Slide 5

I/O Hardware, Revisited

• Many, many kinds of I/O devices — disks, tapes, mice, screens, etc., etc. Can

be useful to try to classify as “block devices” versus “character devices”.

• Many/most devices are connected to CPU via a “device controller” that

manages low-level details — so o/s talks to controller, not directly to device.

• Interaction between CPU and controllers is via registers in controller (write to

tell controller to do something, read to inquire about status), plus (sometimes)

data buffer.

Example — parallel port (connected to printers, etc.) has control register

(example bit — linefeed), status register (example bit — busy), data register

(one byte of data). These map onto the wires connecting the device to the

CPU.

Slide 6

Accessing Device Controller Registers

• Two basic approaches:

– Define “I/O ports” and access via special instructions.

– “Memory-mapped I/O” — map some (real) addresses to device-controller

registers.

Some systems use hybrid approach.

• Making either one work requires some hardware complexity, and there are

tradeoffs; memory-mapped I/O currently more common. (Notice implications

for writing device drivers — which scheme allows writing them without

assembly language?)

CSCI 4320 November 4, 2003

Slide 7

Direct Memory Access, Revisited

• When reading more than one byte (e.g., from disk), device controller typically

reads into internal buffer, checking for errors. How to then transfer to

memory?

• One way — CPU makes transfer, byte by byte.

• Another way — DMA controller makes transfer, having been given a target

memory location and a count.

• Which is better? DMA is extra hardware and usually slower than CPU, but

would appear to offer potential to overlap transfer and computation.

Slide 8

Interrupts, Revisited

• When I/O device finishes its work, it generates interrupt, typically actually

signalling interrupt controller.

Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is now similar to what happens on traps (interrupts generated by

system calls, page faults, other errors):

Hardware locates proper interrupt handler (probably using interrupt vector),

saves critical info such as program counter, and transfers control (probably

switching into supervisor mode).

Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.



CSCI 4320 November 4, 2003

Slide 9

Interrupts, Revisited, A Bit More

• Notice how pipelining complicates things — restarting is much easier with

precise interrupts (all instructions before interrupted one complete, none past

interrupted one complete, etc.), but these are difficult to get with pipelined

processor.

Slide 10

I/O Software, Overview

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., Unix path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• Synchronous interface to asynchronous operations.

• Buffering.

• Device sharing / dedication.

CSCI 4320 November 4, 2003

Slide 11

Polling Versus Interrupts

• Programmed I/O: Program tells controller what to do and busy-waits until it

says it’s done.

Simple but potentially inefficient.

• Interrupt-driven I/O: Program tells controller what to do and then blocks.

While it’s blocked, other processes run. When requested operation is done,

controller generates interrupt, interrupt handler unblocks original program,

• I/O using DMA: Similar to interrupt-driven I/O, but transfer of data to memory

done by DMA controller, only one interrupt per block of data.

Slide 12

Layers of I/O Software

• Typically organize I/O-related parts of operating system in terms of layers —

more modular.

• Usual scheme — see figure on p. 288. Looking at these one at a time, bottom

to top . . .



CSCI 4320 November 4, 2003

Slide 13

Interrupt Handlers

• Background: Something at one of the higher levels has initiated an I/O

operation and blocked itself (e.g., using a semaphore). When operation

completes, interrupt handler is run.

• Interrupt handler must:

Save state of current process so it can be restarted.

Deal with interrupt — acknowledge it (to interrupt controller), run interrupt

service procedure to get info from device controller’s registers/buffers.

Unblock requesting process.

Choose next process to run — maybe process that requested I/O, maybe

interrupted process, maybe another — and do context switch.

Slide 14

Device Drivers

• Idea is to have something that mediates between device controller and o/s —

so, need one of these for every combination of o/s and device. Often written

by device manufacturer.

• Called by other parts of o/s, we hope according to one of a small number of

standard interfaces — e.g., “block device” interface, or “character device”

interface. Communicates with device controller in its language (so to speak).

• Normally run in kernel mode. Once compiled into kernel, now usually loaded

dynamically (details vary).

• When called, must:

Check that parameters are okay (return if not).

Check that device is not in use (queue request if it is).

Talk to device — may involve many commands, may require waiting (block).

Check for errors, return info to caller. Manage queued requests.

CSCI 4320 November 4, 2003

Slide 15

Device-Independent Software

• Uniform interface to device drivers — naming conventions, protection (who

can access what), etc.

• Buffering — simpler interface for user programs, applies to both input and

output.

• Error reporting — actual I/O errors, and also impossible requests from

programs.

• Allocating and releasing dedicated devices.

• Providing device-independent block size — more uniform interface.

Slide 16

User-Space Software

• Library procedures:

Simple wrappers — e.g., write just sets up parameters and makes system

call.

Formatting, e.g., printf.

• Spooling:

Actual I/O to device (e.g., printer) handled by background process.

User programs put requests in special directory.

Examples — printing, network requests.



CSCI 4320 November 4, 2003

Slide 17

Minute Essay

• How are you liking the textbook so far?

• Are the notes I post to the Web in a format that works for you? PDF is not

really negotiable, but I could do two per page or full size — ?


