
CSCI 4320 November 6, 2003

Slide 1

Administrivia

• (None today.)

Slide 2

Minute Essay From Last Lecture

• How are you liking the textbook so far?

(Most people do. Good!)

• Are the notes I post to the Web in a format that works for you? PDF is not

really negotiable, but I could do two per page or full size — ?

(No strong preference, but several people said fewer slides per page would be

good. I’ll try two per page.)

CSCI 4320 November 6, 2003

Slide 3

I/O Software Layers – Recap

• I/O-related code in operating system is typically organized into four layers:

– User-space software — provide library functions for application programs

to use, perform spooling.

– Device-independent software — manage dedicated devices, do buffering,

etc.

– Device drivers — issue requests to device (or controller), queue requests,

etc.

– Interrupt handlers — process interrupt generated by device (or controller).

• As an example, sketch simplified version of what likely happens when an

application program calls C-library function read. (man 2 read for its

parameters.)

(Aside: man -a read will show you all man pages named read.)

Slide 4

User-Space Software Layer — C-Library read function

• Library function called from application program, so executes in “user space”.

• Sets up parameters (“file descriptor” constructed by previous open — more

about files in next chapter, buffer, count) and issues read system call.

System call generates interrupt (trap), transferring control to system read

function.

Eventually, control returns here, after other layers have done their work.

• Returns to caller.



CSCI 4320 November 6, 2003

Slide 5

Device-Independent Software Layer — System read
function

• Invoked by interrupt handler for system calls, so executes in kernel mode.

• Checks parameters — is the file descriptor okay (not null, open for reading,

etc.)? Returns error code if necessary.

• If buffering, checks to see whether request can be obtained from buffer. If so,

copies data and returns.

• If no buffering, or not enough data in buffer, calls appropriate device driver

(file descriptor indicates which one to call, other parameters such as block

number) to fill buffer, then copies data and returns.

Slide 6

Device-Driver Layer — Read Disk Block

• Contains code to be called by device-independent layer and also code to be

called by interrupt handler.

• Maintains list of read/write requests for disk (specifying block to read and

buffer).

• When called by device-independent layer, either adds request to its queue or

issues appropriate commands to controller, then blocks requesting process

(application program).

(This is where things become asynchronous.)

• When called by interrupt handler, transfers data to memory (unless done by

DMA), unblocks requesting process, and if other requests are queued up,

processes next one.

CSCI 4320 November 6, 2003

Slide 7

Interrupt-Handler Layer — Read Disk Block

• Gets control when requested disk operation finishes and generates interrupt.

• Gets status and data from disk controller, unblocks waiting process.

At this point, “call stack” contains C library function, system read function,

and a device-driver function. We return to the device-driver function and then

unwind the stack.

Slide 8

Device Specifics

• Next, a tour of major classes of devices. For each, we look first at what the

hardware can typically do, and then at what kinds of device-driver functionality

we might want to provide.



CSCI 4320 November 6, 2003

Slide 9

Clocks — Hardware

• System clock — can be simple or programmable. Programmable clock can

generate either one interrupt after specified interval or periodic interrupts

(“clock ticks”).

• Backup clock — usually battery-powered, used at startup and perhaps

periodically thereafter.

Slide 10

Clocks — Software

• Clock(s) can be treated as I/O devices, with device driver(s). Functions to

provide:

– Maintain time of day.

– Enforce time limits on processes.

– Provide timer / alarm-clock function.

– Do accounting, profiling, monitoring, etc.

– Do anything required by page replacement algorithm (turn off R bits in

page table entries, e.g.).

• Provide this functionality in code to be called on clock-tick interrupts.

CSCI 4320 November 6, 2003

Slide 11

Character-Oriented Terminals — Hardware Overview

• Hardware consists of character-oriented display (fixed number of rows and

columns) and keyboard, connected to CPU by serial line.

• Actual hardware no longer common (except in mainframe world), but

emulated in software (e.g., Unix xterm) so old programs still work. (Why does

anyone care? some of those old programs are still useful — e.g., text editors

— and usually very stable.)

Slide 12

Character-Oriented Terminals — Keyboard

• Hardware transmits individual ASCII characters.

• Device driver can pass them on one by one without processing, or can

assemble them into lines and allow editing (erase, line kill, suspend, resume,

etc.). Typically provide both modes.

• Device driver should also provide:

– Buffering, so users can type ahead.

– Optional echoing.



CSCI 4320 November 6, 2003

Slide 13

Character-Oriented Terminals — Display

• Hardware accepts regular characters to display, plus escape sequences

(move cursor, turn on/off reverse video, etc.).

In olden days, escape sequences for different kinds of terminals were

different — hence the need for a termcap database that allows calling

programs to be less aware of device-specific details.

• Device driver should provide buffering.

Slide 14

GUIs — Hardware Overview

• PC keyboard — sends very low-level detailed info (keys pressed/released);

contrast with keyboard for character-oriented terminal.

• Mouse — sends (delta-x, delta-y, button status) events.

• Display display can be vector graphics device (rare now, works in terms of

lines, points, text) or raster graphics device (works in terms of pixels). Raster

graphics device uses graphics adapter, which includes:

– Video RAM, mapped to part of memory.

– Video controller that translates contents of video RAM to display. Has two

modes, text and bitmap.

CSCI 4320 November 6, 2003

Slide 15

GUI Software — Basic Concepts

• “WIMP” — windows, icons, menus, pointing device.

• Can be implemented as integral part of o/s (Windows) or as separate

user-space software (Unix).

Slide 16

GUIs — Keyboard

• Hardware delivers very low-level info (individual key press/release actions).

• Device driver translates these to character codes, typically using configurable

keymap.



CSCI 4320 November 6, 2003

Slide 17

GUIs — Display (Windows Approach)

• Each window represented by an object, with methods to redraw it.

• Output to display performed by calls to GDI (graphics device interface) —

mostly device-independent, vector-graphics oriented. A .wmf file (Windows

metafile) represents a collection of calls to GDI procedures.

Slide 18

Network Terminals — Hardware

• Keyboard, mouse, and display as described previously, plus local processor;

connected to remote system.

• Local processor can be very capable (X terminal, or even PC configured to

run as one) or more primitive (SLIM terminal).

CSCI 4320 November 6, 2003

Slide 19

GUIs — Display (Unix Approach)

• X Window System designed to support both local input/output devices and

network terminals, in terms of:

– “X clients” are programs that want to do GUI I/O.

– “X server” provides GUI services. Can run on the same system as clients,

a different Unix system, an X terminal (where it’s the “o/s”), or under

another o/s (“X servers” for Windows — e.g., Exceed, XFree86).

• Core system is client/server communication protocol (input, display events

akin to those in Windows) and windowing system. “Window manager” is

separate, as are “widget” libraries. Modularity makes for flexibility and

portability, at a cost in performance.

Slide 20

GUI-Based Programming

• Input from keyboard and mouse captured by o/s and turned into messages to

process owning appropriate window.

• Typical structure of GUI-based program is a loop to receive and dispatch

these messages — “event-driven” style of programming.

• Details vary between Windows and X, but overall idea is similar. See example

programs in textbook.



CSCI 4320 November 6, 2003

Slide 21

Minute Essay

• None — just sign in on board.


